

Continuous State MRF's

- Topics to be covered:
 - Quadratic functions
 - Non-Convex functions
 - Continuous MAP estimation
 - Convex functions

Why use Non-Gaussian MRF's?

- Gaussian MRF's do not model edges well.
- In applications such as image restoration and tomography, Gaussian MRF's either
 - Blur edges
 - Leave excessive amounts of noise

Gaussian MRF's

- Zero mean Gaussian MRF's have density functions with the form

$$p(x) = \frac{1}{Z} \exp \left\{ -\frac{1}{2\sigma^2} x^t B x \right\}$$

- It can be shown that

$$x^t B x = \sum_{s \in S} a_s x_s^2 + \sum_{\{s,r\} \in C} b_{sr} |x_s - x_r|^2$$

where

$$\begin{aligned} a_s &\triangleq \sum_{r \in S} B_{s,r} \\ b_{s,r} &\triangleq -B_{s,r} \end{aligned}$$

- We will further assume that $a_s = 0$ and $\sum_r b_{sr} = 1$, so that

$$\log p(x) = -\frac{1}{2\sigma^2} \sum_{\{s,r\} \in C} b_{sr} |x_s - x_r|^2 - \log Z$$

MAP Estimation with Gaussian MRF's

- MAP estimate has the form

$$\hat{x} = \arg \min_x \left\{ -\log p(y|x) + \sum_{\{s,r\} \in C} b_{sr} |x_s - x_r|^2 \right\}$$

- **Problem:**

- The terms $|x_s - x_r|^2$ penalize rapid changes in gray level.
- Quadratic function, $|\cdot|^2$, excessively penalizes image edges.

Non-Gaussian MRF's Based on Pair-Wise Cliques

- We will consider MRF's with pair-wise cliques

$$p(x) = \frac{1}{Z} \exp \left\{ - \sum_{\{s,r\} \in C} b_{sr} \rho \left(\frac{x_s - x_r}{\sigma} \right) \right\}$$

$|x_s - x_r|$ - is the change in gray level.

σ - controls the gray level variation or scale.

$\rho(\Delta)$:

- Known as the potential function.
- Determines the cost of abrupt changes in gray level.
- $\rho(\Delta) = |\Delta|^2$ is the Gaussian model.

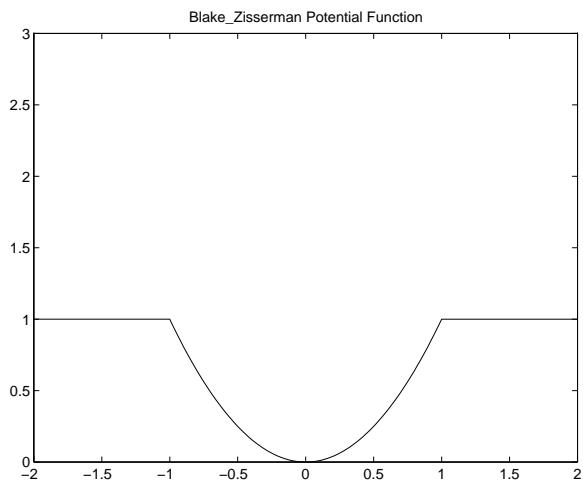
$\rho'(\Delta) = \frac{d\rho(\Delta)}{d\Delta}$:

- Known as the influence function from “M-estimation” [14, 11].
- Determines the attraction of a pixel to neighboring gray levels.

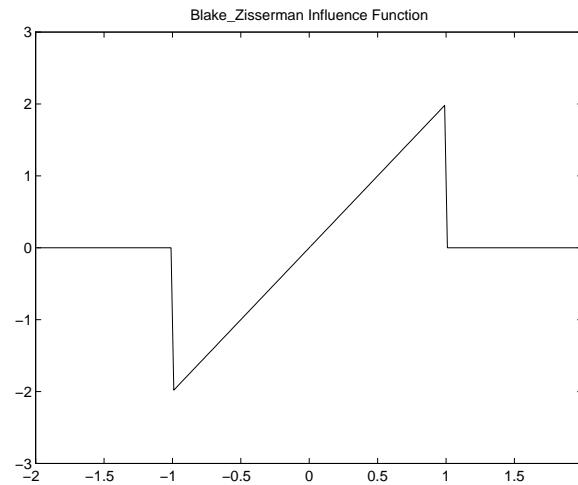
Weak Spring Model

- Proposed by Blake and Zisserman [3, 2] as a model of a “weak spring” that can break if the values of adjacent pixels differ too much.

$$\rho(\Delta) = \min \{\Delta^2, 1\}$$



Potential Function



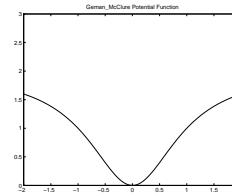
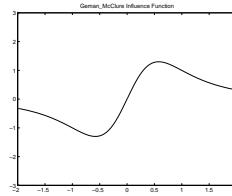
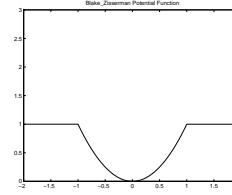
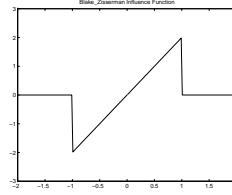
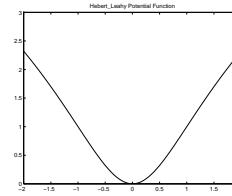
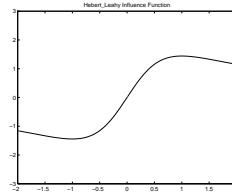
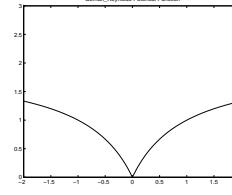
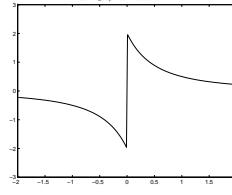
Influence Function

- T - Edge magnitude

$\Delta > T \Rightarrow$ no attraction from influence function

$\Delta < T \Rightarrow$ Gaussian smoothing

Non-Convex Potential Functions

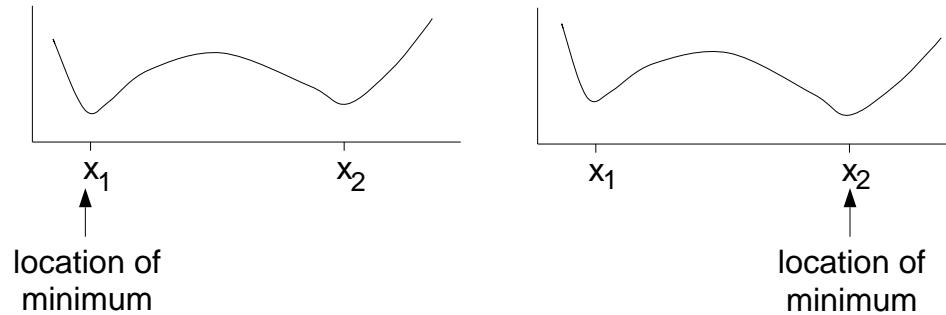
Authors	$\rho(\Delta)$	Ref.	Potential func.	Influence func.
Geman and McClure	$\frac{\Delta^2}{1+\Delta^2}$	[7, 8]		
Blake and Zisserman	$\min \{\Delta^2, 1\}$	[3, 2]		
Hebert and Leahy	$\log(1 + \Delta^2)$	[10]		
Geman and Reynolds	$\frac{ \Delta }{1+ \Delta }$	[6]		

Properties of Non-Convex Potential Functions

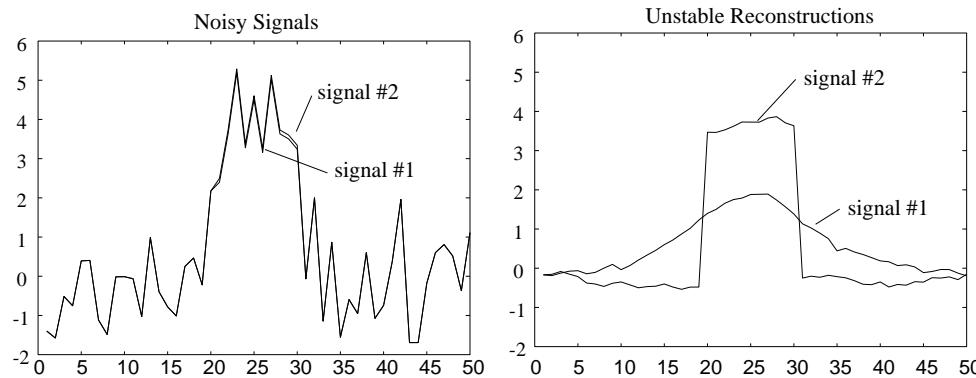
- Advantages
 - Very sharp edges
 - Very general class of potential functions
- Disadvantages
 - Difficult (impossible) to compute MAP estimate
 - Usually requires the choice of an edge threshold
 - **MAP estimate is a discontinuous function of the data**

Continuous (Stable) MAP Estimation[4]

- Minimum of non-convex function can change abruptly.



- Discontinuous MAP estimate for Blake and Zisserman potential.



- Theorem:[4] - If the log of the posterior density is **strictly convex**, then the MAP estimate is a continuous function of the data.

Convex Potential Functions

Authors(Name)	$\rho(\Delta)$	Ref.	Potential func.	Influence func.
Besag	$ \Delta $	[1]		
Green	$\log \cosh \Delta$	[9]		
Stevenson and Delp (Huber function)	$\min \{ \Delta ^2, 2 \Delta - 1\}$	[17]		
Bouman and Sauer (Generalized Gaussian MRF)	$ \Delta ^p$	[4]		

Properties of Convex Potential Functions

- Both $\log \cosh(\Delta)$ and Huber functions
 - Quadratic for $|\Delta| \ll 1$
 - Linear for $|\Delta| \gg 1$
 - Transition from quadratic to linear determines edge threshold.
- Generalized Gaussian MRF (GGMRF) functions
 - Include $|\Delta|$ function
 - Do not require an edge threshold parameter.
 - Convex and differentiable for $p > 1$.

Parameter Estimation for Continuous MRF's

- Topics to be covered:
 - Estimation of scale parameter, σ
 - Estimation of temperature, T , and shape, p

ML Estimation of Scale Parameter, σ , for Continuous MRF's [5]

- For any continuous state Gibbs distribution

$$p(x) = \frac{1}{Z(\sigma)} \exp \{-U(x/\sigma)\}$$

the partition function has the form

$$Z(\sigma) = \sigma^N Z(1)$$

- Using this result the ML estimate of σ is given by

$$\frac{\sigma}{N} \frac{d}{d\sigma} U(x/\sigma) \Big|_{\sigma=\hat{\sigma}} - 1 = 0$$

- This equation can be solved numerically using any root finding method.

ML Estimation of σ for GGMRF's [12, 5]

- For a Generalized Gaussian MRF (GGMRF)

$$p(x) = \frac{1}{\sigma^N Z(1)} \exp \left\{ -\frac{1}{p\sigma^p} U(x) \right\}$$

where the energy function has the property that for all $\alpha > 0$

$$U(\alpha x) = \alpha^p U(x)$$

- Then the ML estimate of σ is

$$\hat{\sigma} = \left(\frac{1}{N} U(x) \right)^{(1/p)}$$

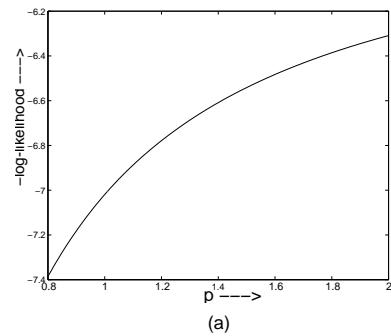
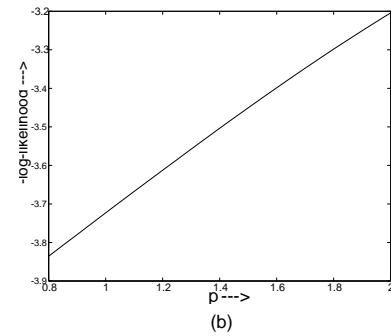
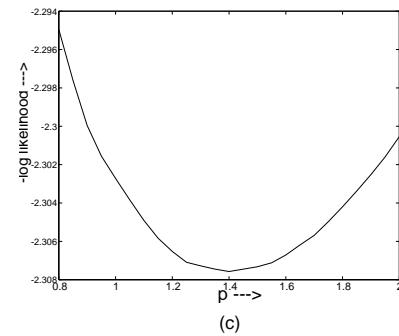
- Notice for that for the i.i.d. Gaussian case, this is

$$\hat{\sigma} = \sqrt{\frac{1}{N} \sum_s |x_s|^2}$$

Estimation of Temperature, T , and Shape, p , Parameters

- ML estimation of T [8]
 - Used to estimate T for any distribution.
 - Based on “off line” computation of log partition function.
- Adaptive method [13]
 - Used to estimate p parameter of GGMRF.
 - Based on measurement of kurtosis.
- ML estimation of p [16, 15]
 - Used to estimate p parameter of GGMRF.
 - Based on “off line” computation of log partition function.

Example Estimation of p Parameter



- ML estimation of p for (a) transmission phantom (b) natural image (c) image corrupted with Gaussian noise. The plot below each image shows the corresponding negative log-likelihood as a function of p . The ML estimate is the value of p that minimizes the plotted function.

References

- [1] J. Besag. Towards Bayesian image analysis. *Journal of Applied Statistics*, 16(3):395–407, 1989.
- [2] A. Blake. Comparison of the efficiency of deterministic and stochastic algorithms for visual reconstruction. *IEEE Trans. on Pattern Analysis and Machine Intelligence*, 11(1):2–30, January 1989.
- [3] A. Blake and A. Zisserman. *Visual Reconstruction*. MIT Press, Cambridge, Massachusetts, 1987.
- [4] C. A. Bouman and K. Sauer. A generalized Gaussian image model for edge-preserving MAP estimation. *IEEE Trans. on Image Processing*, 2(3):296–310, July 1993.
- [5] C. A. Bouman and K. Sauer. Maximum likelihood scale estimation for a class of Markov random fields. In *Proc. of IEEE Int'l Conf. on Acoust., Speech and Sig. Proc.*, volume 5, pages 537–540, Adelaide, South Australia, April 19-22 1994.
- [6] D. Geman and G. Reynolds. Constrained restoration and the recovery of discontinuities. *IEEE Trans. on Pattern Analysis and Machine Intelligence*, 14(3):367–383, March 1992.
- [7] S. Geman and D. McClure. Bayesian images analysis: An application to single photon emission tomography. In *Proc. Statist. Comput. sect. Amer. Stat. Assoc.*, pages 12–18, Washington, DC, 1985.
- [8] S. Geman and D. McClure. Statistical methods for tomographic image reconstruction. *Bull. Int. Stat. Inst.*, LII-4:5–21, 1987.
- [9] P. J. Green. Bayesian reconstruction from emission tomography data using a modified EM algorithm. *IEEE Trans. on Medical Imaging*, 9(1):84–93, March 1990.
- [10] T. Hebert and R. Leahy. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. *IEEE Trans. on Medical Imaging*, 8(2):194–202, June 1989.
- [11] P. Huber. *Robust Statistics*. John Wiley & Sons, New York, 1981.
- [12] K. Lange. An overview of Bayesian methods in image reconstruction. In *Proc. of the SPIE Conference on Digital Image Synthesis and Inverse Optics*, volume SPIE-1351, pages 270–287, San Diego, CA, 1990.
- [13] W. Pun and B. Jeffs. Shape parameter estimation for generalized Gaussian Markov random field models used in MAP image restoration. In *29th Asilomar Conference on Signals, Systems, and Computers*, October 29 - November 1 1995.
- [14] W. Rey. *Introduction to Robust and Quasi-Robust Statistical Methods*. Springer-Verlag, Berlin, 1980.

- [15] S. S. Saquib, C. A. Bouman, and K. Sauer. ML parameter estimation for Markov random fields, with applications to Bayesian tomography. Technical Report TR-ECE 95-24, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, October 1995.
- [16] S. S. Saquib, C. A. Bouman, and K. Sauer. Efficient ML estimation of the shape parameter for generalized Gaussian MRF. In *Proc. of IEEE Int'l Conf. on Acoust., Speech and Sig. Proc.*, volume 4, pages 2229–2232, Atlanta, GA, May 7-10 1996.
- [17] R. Stevenson and E. Delp. Fitting curves with discontinuities. *Proc. of the first international workshop on robust computer vision*, pages 127–136, October 1-3 1990.