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Application of Inverse Methods to Tomography

• Topics to be covered:

– Tomographic system and data models

– MAP Optimization

– Parameter estimation
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Forward Projection

• Typical tomographic imaging senerio:

– Projections collected at every angle θ and displacement r.

– Forward projections pθ(r) are known as a Radon transform.

p (r)
θ

θ

x

y

r

• Objective: reverse this process to form the original image f (x, y).

– Fourier Slice Theorem is the basis of inverse

– Inverse can be computed using convolution back projection (CBP)
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Advantages of Iterative/Statistical Reconstruction

• Low signal-to-noise data

– Data may vary with projection (dense objects, noisy detectors, etc.)

– FBP treats all projections equally

• Missing projections

– Dense objects may make some views impossible.

– Helical scanners do not take every view at each position

• Complex geometries

– Projections may be taken in fan-beam and cone-beam geometries

• Non-Gaussian prior modeling

– Non-Gaussian models may be particularly appropriate for object cross-
sections
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Transmission Tomography

Emitter

Detector  i

Y  - detected events i

yT - dosage

x   - absorption of pixel jj

YT - Dosage emitted from source
(not random)

Xj - jth pixel

Yi - Energy measured by ith detector

Pij - Contribution of jth pixel to ith

detector

• Typical assumptions

– Yi are i.i.d. and Poisson

– E[Yi|X ] = YT exp {∑

j Pi,jXj}

• Includes computed tomography (CT), scanning electron microscope (SEM)
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Emission Tomography

Detector  i

Detector  i

x  - detection rate jP ij

x  - emission ratej

Xj - Emission rate from jth pixel

Yi - Energy measured by ith detector
pair

Pij - Contribution of jth pixel to ith

detector

• Typical assumptions

– Yi are i.i.d. and Poisson

– E[Yi|X ] = ∑

j Pi,jXj

• Includes positron emission tomography (PET), and single photon emission
tomography (SPECT)
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Statistical Data Model[3]

• Notation

– y - vector of photon counts

– x - vector of image pixels

– P - projection matrix

– Pj,∗ - jth row of projection matrix

• Emission formulation

log p(y|x) =
M
∑

i=1
(−Pi∗x + yi log{Pi∗x} − log(yi!))

• Transmission formulation

log p(y|x) =
M
∑

i=1

(

−yTe−Pi∗x + yi(log yT − Pi∗x) − log(yi!)
)

• Common form
log p(y|x) = − ∑M

i=1 fi(Pi∗x)

– fi(·) is a convex function

– Not a hard problem!
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Maximum A Posteriori Estimation (MAP)

• MAP estimate incorporates prior knowledge about image

x̂ = arg max
x

p(x|y)

= arg max
x>0
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• Can be solved using direct optimization

• Incorporates positivity constraint
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MAP Optimization Strategies

• Expectation maximization (EM) based optimization strategies

– ML reconstruction[12, 10]

– MAP reconstruction[8, 7, 9]

– Slow convergence; Similar to gradient search.

– Accelerated EM approach[6]

• Direct optimization

– Preconditioned gradient descent with soft positivity constraint[5]

– ICM iterations (also known as ICD and Gauss-Seidel)[3]
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Convergence of ICM Iterations:
MAP with Generalized Gaussian Prior q = 1.1

• ICM also known as iterative coordinate descent (ICD) and Gauss-Seidel
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• Convergence of MAP estimates using ICD/Newton-Raphson updates, Green’s
(OSL), and Hebert/Leahy’s GEM, and De Pierro’s method, and a general-
ized Gaussian prior model with q = 1.1 and γ = 3.0.
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Estimation of σ from Tomographic Data

• Assume a GGMRF prior distribution of the form

p(x) =
1

σNZ(1)
exp
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• Problem: We don’t know X !

• EM formulation for incomplete data problem

σ(k+1) = arg max
σ

E
{

log p(X|σ)|Y = y, σ(k)
}
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
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• Iterations converge toward the ML estimate.

• Expectations may be computed using stochastic simulation.
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Example of Estimation of σ from Tomographic Data

Accelerated Metropolis

Metropolis            

Projected sigma       
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• The above plot shows the EM updates for σ for the emission phantom
modeled by a GGMRF prior (p = 1.1) using conventional Metropolis (CM)
method, accelerated Metropolis (AM) and the extrapolation method. The
parameter s denotes the standard deviation of the symmetric transition
distribution for the CM method.
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Example of Tomographic Reconstructions

a b c d e

• (a) Original transmission phantom and (b) CBP reconstruction. Recon-
structed transmission phantom using GGMRF prior with p = 1.1 The scale
parameter σ is (c) σ̂ML ≈ σ̂CBP , (d) 1

2σ̂ML, and (e) 2σ̂ML

• Phantom courtesy of J. Fessler, University of Michigan
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Multiscale Stochastic Models

• Generate a Markov chain in scale

• Some references

– Continuous models[2, 1, 11]

– Discrete models[4, 11]

• Advantages:

– Does not require a causal ordering of image pixels

– Computational advantages of Markov chain versus MRF

– Allows joint and marginal probabilities to be computed using forward/backward
algorithm of HMM’s.
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