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Application of Inverse Methods to Tomography

e Topics to be covered:

— Tomographic system and data models
— MAP Optimization

— Parameter estimation
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Forward Projection

e T'ypical tomographic imaging senerio:

— Projections collected at every angle 6 and displacement r.

— Forward projections py(r) are known as a Radon transform.
y

p,(")
e Objective: reverse this process to form the original image f(x,y).

— Fouriler Slice Theorem is the basis of inverse

— Inverse can be computed using convolution back projection (CBP)
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Advantages of Iterative/Statistical Reconstruction

e Low signal-to-noise data

— Data may vary with projection (dense objects, noisy detectors, etc.)

— FBP treats all projections equally
e Missing projections

— Dense objects may make some views impossible.

— Helical scanners do not take every view at each position
e Complex geometries

— Projections may be taken in fan-beam and cone-beam geometries
e Non-Gaussian prior modeling

— Non-Gaussian models may be particularly appropriate for object cross-
sections
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Transmission Tomography

Yr - Dosage emitted from source

Emitt
" ir)\ (not random)

"\ yr - dosage

X, - 7" pixel
Y; - Energy measured by i detector

X ; - absorption of pixel | B;; - Contribution of 5 pixel to i

detector
Y, - detected events o Typical assumptions
@\/ — Y, are 1.1.d. and Poisson
Detector i — BY}|X] = Yrexp {z; P, X;}

e Includes computed tomography (CT), scanning electron microscope (SEM)
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Emission Tomography

Detector |

— X - Emission rate from 5t pixel

Y; - Energy measured by i detector

paLr
X ;- emission rate By - Contribution of 5 pixel to i
detector

P, x,- detection rate ~ ® Typical assumptions

A — Y, are 1.1.d. and Poisson
e - BlYi|X] = 5; P,;X,

Detector i

e Includes positron emission tomography (PET), and single photon emission
tomography (SPECT)
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Statistical Data Model|3]

e Notation

— 1 - vector of photon counts
— x - vector of image pixels
— P - projection matrix

— P, - 7t row of projection matrix

e Fmission formulation

log plylz) = X (=Fuz +yilog{ Pra} — log(y!))

1=

<

e 'Transmission formulation

M

log p(y|z) = El <—?JT€_PZ'*:C +yi(logyr — Pix) — 10%(%0)

e Common form

log p(y|z) = — =, fi( Pux)

— fi(+) is a convex function

— Not a hard problem!
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Maximum A Posteriori Estimation (MAP)

e MAP estimate incorporates prior knowledge about image
T = argmaxp(z|y)

> bijplar — )

> fi(P
= alghax _igl fi( Pi) _143<j

e Can be solved using direct optimization

e Incorporates positivity constraint
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MAP Optimization Strategies

e Expectation maximization (EM) based optimization strategies

— ML reconstruction[12, 10]
— MAP reconstruction[8, 7, 9]

— Slow convergence; Similar to gradient search.
— Accelerated EM approach 6]

e Direct optimization

— Preconditioned gradient descent with soft positivity constraint|5]
— ICM iterations (also known as ICD and Gauss-Seidel)|3]
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Convergence of ICM Iterations:
MAP with Generalized Gaussian Prior ¢ = 1.1

e [CM also known as iterative coordinate descent (ICD) and Gauss-Seidel
GGMREF Prior, g=1.1
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e Convergence of MAP estimates using ICD /Newton-Raphson updates, Green’s
(OSL), and Hebert/Leahy’s GEM, and De Pierro’s method, and a general-

ized Gaussian prior model with ¢ = 1.1 and v = 3.0.
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Estimation of ¢ from Tomographic Data

e Assume a GGMREF prior distribution of the form

1

) = iy o U )

e Problem: We don’t know X!

e EM formulation for incomplete data problem

o™ = argmax E {log p(X]o)|Y =y, 0]

) (E {]tU(XNY =y, O(k)Dl/p

e [terations converge toward the ML estimate.

e [ixpectations may be computed using stochastic simulation.
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Example of Estimation of ¢ from Tomographic Data

0.28

—— Accelerated Metropolis
— — Metropolis
— - Projected sigma
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0.241
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0.14r

e The above plot shows the EM updates for ¢ for the emission phantom
modeled by a GGMRF prior (p = 1.1) using conventional Metropolis (CM)
method, accelerated Metropolis (AM) and the extrapolation method. The
parameter s denotes the standard deviation of the symmetric transition

distribution for the CM method.
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Example of Tomographic Reconstructions

e (a) Original transmission phantom and (b) CBP reconstruction. Recon-
structed transmission phantom using GGMREF prior with p = 1.1 The scale

parameter o is (c) oarr = opp, (d) s0m1, and (e) 26

e Phantom courtesy of J. Fessler, University of Michigan
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Multiscale Stochastic Models

e Generate a Markov chain in scale

v

— Continuous models|2, 1, 11]
— Discrete models[4, 11]

e Some references

e Advantages:

— Does not require a causal ordering of image pixels
— Computational advantages of Markov chain versus MRF

— Allows joint and marginal probabilities to be computed using forward /backward
algorithm of HMM’s.
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