
Chapter 1

Image Restoration Using GMRF’s

The previous chapters have presented various models such as the 2D AR
model and the GMRF, but so far we have not seen how these models can be
used to solve imaging problems. In this chapter, we show how these models
can be used in imaging applications via an example of image restoration.
Although our example is somewhat simplified from a practical perspective,
it will serve as a basis for presenting and developing basic methods that are
useful in a wide variety of imaging problems.

Let X ∈ <N be an N pixel image that we would like to measure, and let
Y ∈ <N be the noisy measurements given by

Y = AX + W (1.1)

where A is a nonsingular N ×N matrix, and W is a vector of i.i.d. Gaussian
noise with N(0, σ2).

This type of problem occurs commonly in imaging applications where Y

consists of noisy and blurred scanner measurements and and X is the restored
image that we would like to recover. For example, the matrix A may represent
the blurring operation of a linear space-invariant filter. So we have that

ys =
∑

r∈S
as−rxr + ws

where S is the set of all pixel locations. In this case, the x and y are typically
chosen to be the respective images in raster order, and A is a Toeplize-block-
Toeplitz matrix. In fact, with a little generalization, the model of (1.1) can be
used to represent important problems in image reconstruction that occur in
applications such as tomographic reconstruction or transmission or emission
tomography, or even astronomical imaging.
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Using the model of (1.1), the conditional distribution of Y given X is

pY |X(y|x) =
∏

s∈S

1√
2πσ

exp







− 1

2σ2
(ys −

∑

r∈S
Asrxs)

2







=
1

(2πσ2)N/2
exp




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− 1

2σ2

∑

s∈S
(ys −

∑

r∈S
Asrxs)

2







=
1

(2πσ2)N/2
exp

{

− 1

2σ2
||y − Ax||2

}

(1.2)

where S is the set of pixel indices for the image.

1.1 Maximum Likelihood and Bayesian Estimators

One approach to estimation of X is to use the maximum likelihood (ML)
estimator. In this case, X is assumed to be a deterministic quantity, and the
ML estimate is given by

x̂ML = arg max
x∈<N

log pY |X(y|x)

= arg max
x∈<N

{

− 1

2σ2
||y − Ax||2 − N

2
log(2πσ2)

}

= arg min
x∈<N

||y − Ax||2

= A−1y .

However, this solution has a number of problems associated with it. First,
if A has very small eigenvalues, the inversion of A maybe unstable. This
can happen if the blurring filter transfer function is nearly zero at certain
frequencies. In this case, the matrix inversion corresponds to applying a very
high amplification of these suppressed frequencies in order to restore them.
However, even if A = I, the identity matrix, the ML estimate is unsatisfying
since it says that the best restortion of a noisy image is to simply accept the
measured noise with no further processing. Intuitively, we might expect that
some type of smoothing or other processing might be able to reduce the noise
without excessively degrading the image detail.

An alternative approach is to assume that X is random to use the Bayesian
estimation framework. The approach has the advantage that one can incorpo-
rate knowledge about the probable behavior of X; however, its disadvantage
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is that it requires an accurate model be selected that captures the character-
istics of X. For this example, we will use a zero mean homogeneous Gaussian
Markov random field (GMRF) model for X. In this case, X is a zero-mean
jointly Gaussian random process, so its distribution has the form

pX(x) =
1

(2πσ2
x)

N/2
|B|1/2 exp







− 1

2σ2
x

xtBx







(1.3)

where B is an invertible symmetric matrix. Since X is a homogeneous GMRF,
the entrees of B must have the form

Bi,j = δi−j − gi−j

where gi−j is the non-causal FIR prediction filter associated with the GMRF.
Using this assumption, we can compute the posterior distribution pX|Y (x|y).
From Bayes rule, we know that

log pX|Y (x|y) = log pY |X(y|x) + log pX(x)− log pY (y) .

However, this expression is difficult to evaluate directly because calculation
of the term pY (y) requires the evaluation of a difficult integral. Therefore,
we will take a different tact, and simply evaluate log pX|Y (x|y) as a function
of x, ignoring any dependence on y. This means that our solution will be
correct within a unknown multiplicative constant, but we can compute that
constant because we know that pX|Y (x|y) must integrate to 1. So using the
expressions of (1.2) and (1.3), we have that

log pX|Y (x|y) = − 1

2σ2
||y − Ax||2 − 1

2σ2
x

xtBx + c(y) (1.4)

where c(y) is some complex function of y. Since this is a quadratic function
of x, we can express this function in the form

log pX|Y (x|y) = −1

2
(x− µ)tR−1(x− µ) + c′(y) (1.5)

where c′(y) is a new function of y and µ and R are given by

µ(y) =



AtA +
σ2

σ2
x

B





−1

Aty

R =





1

σ2
AtA +

1

σ2
x

B





−1

.
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The correctness of (1.5) is easily verified by taking the first and second gra-
dients (i.e. the Hessian) of each expression with respect to x, and showing
that they are equal. From this, we see that the expression for the posterior
distribution has the form

pX|Y (x|y) =
1

z(y)
exp

{

−1

2
(x− µ(y))tR−1(x− µ(y))

}

where z(y) is an unknown function of y. However, since we know that
∫

pX|Y (x|y)dx = 1, we know that the normalizing constant must be same
one used for any multivariate Gaussian distribution. So we have the final
result that

pX|Y (x|y) =
1

(2π)N/2
|R|−1/2 exp

{

−1

2
(x− µ(y))tR−1(x− µ(y))

}

, (1.6)

and we see that the conditional distribution of X given Y is normal with
mean µ(y) and covariance R.

Using the posterior distribution of (1.6), we can compute some typical
Bayesian estimators. Notice that the MMSE estimator is given by the con-
ditional mean,

x̂MMSE = E [X|Y = y] = µ(y)

and the maximum a posterior estimate is given by the conditional mode

x̂MAP = arg max
x∈<N

log pX|Y (x|y) (1.7)

= arg max
x∈<N

{

−1

2
(x− µ(y))tR−1(x− µ(y))

}

(1.8)

= arg min
x∈<N

{

1

2
(x− µ(y))tR−1(x− µ(y))

}

(1.9)

= µ(y) (1.10)

So for this case, the MMSE and MAP estimates are the same. In fact, this
is always the case when all the random quantities in an estimation problem
are jointly Gaussian. However, we will find that the MMSE and MAP are
generally not the same when the distributions are non-Gaussian. This will be
important later since we will see that non-Gaussian distributions are better
models of image features such as edges.

**Add a figure showing why the MAP and MSEE estimates are the same
for Gaussian distributions.****
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So it seems that our problem is solved with the ubiquitous estimate

x̂ =
(

AtA + λB
)−1

Aty (1.11)

where we define λ = σ2

σ2
x

. However, while the solution of (1.11) is mathe-
matically appealing it is not very practical for most applications because the
dimension of the matrix to be inverted is enormous. For example, if N equals
1 million pixels, then the matrix to be inverted has 1012 elements. If each
element is stored with a 64 bit float, then the matrix requires approximately
8 terra bytes of storage! Clearly we will need another approach.

1.2 Optimization for Computing the MAP Estimate

In order to make the computation of the MAP estimate more tractable, we
need to go back to the first principles of its computation. The MAP estimate
of X given Y given by

x̂MAP = arg max
x∈<N

pX|Y (x|y)

= arg max
x∈<N

{

log pX|Y (x|y)
}

= arg max
x∈<N

{

log pY |X(y|x) + log pX(x)− log pY (y)
}

= arg min
x∈<N

{

− log pY |X(y|x)− log pX(x)
}

. (1.12)

Substituting the expressions from (1.2) and (1.3) into (1.12), yields the equa-
tions

x̂MAP = arg min
x∈<N

{

1

2σ2
||y − Ax||2 +

N

2
log(2πσ2)

+
1

2σ2
x

xtBx +
N

2
log(2πσ2

x|B|−1/N)







= arg min
x∈<N







1

2σ2
||y − Ax||2 +

1

2σ2
x

xtBx







So we have the final expression for the MAP estimate in terms of an explicit
optimization

x̂MAP = arg min
x∈<N

{

||y − Ax||2 + λxtBx
}

(1.13)

where λ = σ2/σ2
x.
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Figure 1.1: 3D rendering of the example non-quadratic cost function from two different
views. The analytical form of the function is 1

(x−y)2+1
exp(−4(x + y)2).

In equation (1.13), we see that, in this case, MAP estimation is equivalent
to optimization of a quadratic function. The key insight is that while the
direct inversion of (1.11) provides an exact mathematical solution, it requires
an enormous amount of computation. Alternatively, numerical optimization
methods can provide an approximate solution to the optimization of (1.13)
that can be computed much less expensively, but at the cost of numerical
approximation. Ironically, the “exact” solution of (1.11) can actually yield
numerically less precise solutions than optimization methods because of the
cumulative effects of round-off error.

Appendix A presents some basic facts about convex functions and their
use in optimization. Using the results of this appendix, we can see that the
cost function to be optimized

f(x) = ||y − Ax||2 + λxtBx

is strictly convex and has a unique global minimum at µ(y) which is a solution
to the equation

∇f(x)|x=x̂ = 0 .

1.3 Gradient Decent Optimization

A natural approach to optimization of a continuously differentiable function is
to start at an initial value x(0), and then incrementally move in the opposite
direction of the gradient. Intuitively, the gradient is the direction of the
functions most rapid increase, so one would expect moving in the opposite
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Gradiant Ascent: N = 100, Step Size = 0.020000
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Gradiant Ascent: N = 100, Step Size = 0.060000

x axis

ya
xi

s

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Gradiant Ascent: N = 100, Step Size = 0.180000
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Figure 1.2: 2D contour plots of the trajectory of gradient decent optimization using a step
size of a) α = 0.02; b) α = 0.06; c) α = 0.18. Notice that the convergence with small α is
slow, and the convergence with large α is unstable.

direction to be an effective method of minimizing the function. This approach
to optimization is generally referred to as gradient decent optimization or
Jacobi iterations, and it is commonly used in a variety of applications.

The general form of the gradient decent iterations is given by

x(k+1) = x(k) − α[∇f(x(k))]t

where x(k) is the current image estimate, x(k+1) is the updated image, and α

is a user selected step size. For the image restoration problem of (1.13), the
gradient of f(x) is given by

∇f(x) = −2(y − Ax)tA + 2λxtB ;

so the gradient decent update equation is given by

x(k+1) = x(k) + α[At(y − Ax(k))− λBx(k)] (1.14)

where α is scaled by 1/2. Rearranging terms, we have the recursion

x(k+1) = (I − α[AtA + λB])x(k) + αAty . (1.15)

An important special case of (1.15) occurs when A represents a linear
space-invariant filter as. When A is a space-invariant filter, then it is Toeplitz-
block-Toeplitz; the operation Ax is equivalent to 2D convolution as ∗ xs; and
multiplication by the transpose Aty is equivalent to 2D convolution with the
space-reversed impulse response a−s ∗ ys. In this case, the gradient decent
update equation of (1.14) has the form

x(k+1)
s = x(k)

s + α[a−s ∗ (ys − as ∗ x(k)
s ) + λ(δs − gs)x

(k)
s ] . (1.16)
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Here you can see that each iteration of gradient decent is computed through
the application of LSI filters, so as long as the filter impulse response is
spatially limited, the computation is not excessive.

1.3.1 Convergence Analysis of Gradient Decent

Gradient decent is a simple algorithm, but a key disadvantage is related to the
difficulty in selection of the step-size parameter. Fig. 1.1 shows an example
of a 2D non-quadratic function to be maximized, which is equivalent to the
minimization of the function’s negative. Notice that the peak of the function
is narrow along one dimension and wide along another. Fig. 1.2 shows the
effect of the step-size selection. Too large of a step size results in the unstable
convergence shown in Fig. 1.2(c), whereas too small of a step size results
in the slow convergence of Fig. 1.2(c). Unfortunately, for high dimensional
optimization problems such as (1.13), we will see that their usually is no
choice of α which is effective for both high and low spatial frequencies.

To better understand why this is true, we can analyze the convergence
behavior of the gradient decent algorithm. Let us assume that the iteration
of (1.15) converges to the limit x(∞), then we can define the error in the
calculation of the MAP estimate to be ε(k) = x(k) − x(∞). In this case, we
know that taking the limit of (1.15) results in

x(∞) = (I − α[AtA + λB])x(∞) + αAty . (1.17)

Subtracting (1.15) and (1.17) results in

ε(k+1) =
(

I − α[AtA + λB]
)

ε(k) . (1.18)

We can further simply the structure of (1.18) by using eigenvector analysis
of the matrix

H
4
= AtA + λB .

Since H is symmetric, we know it can be diagonalized as H = EΛE t where
columns of E are the eigenvectors of H, and Λ = diag{h1, · · · , hN} is a
diagonal matrix containing the corresponding N eigenvalues of H. Notice
that the eigenvalues, hi, are all strictly positive because the both matrices are
positive definite, and λ > 0. If we define, the transformed error ε̃(k) = Etε(k),
then we may then derive the following simple relationship for the decay of
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the error in the gradient decent method.

ε̃(k) = (I − αΛ)k ε̃(0) . (1.19)

Since Λ is diagonal, we can see that the ith component of the error then
decays as

ε̃
(k)
i = (1− αhi)

k ε̃
(0)
i . (1.20)

In order for the convergence of (1.20) to be stable, we must have that |1 −
αhi| < 1 for each component i. From this, and the fact that hi > 0, we derive
the following stability condition,

α <
2

maxi{hi}
, (1.21)

which results in the following bound

max
i
{1− αhi} ≥ 1− α min

i
{hi} > 1− 2

mini{hi}
maxi{hi}

The quantity κ(H) = maxi{hi}
mini{hi} is known as the conditioning number of the

matrix H. The conditioning number is valuable because it quantifies the
difficulty of inverting a matrix. Remember, the exact solution to our problem
is expressed by the equation (1.11) as x̂ = H−1Aty; so our optimization
problem is really equivalent to the inversion of H. Using this concept, we can
lower bound the rate of convergence of (1.20) as

max
i











ε̃
(k)
i

ε̃
(0)
i











>



1− 2

κ(H)





k

.

In many applications, the conditioning number of H can be very large. In
this case, the value 1− 1/κ is very close to 1, and the convergence of (1.20)
is very slow. The basic problem is that it is not possible to choose α so
that both modes corresponding to both the large and small eigenvalues of H
converge quickly. In general, the modes corresponding to small eigenvalues
tend to converge quickly, and if one try to increase the speed of convergence
by increasing the size of α, then the convergence can become unstable.

1.3.2 Frequency Analysis of Gradient Decent

The general convergence analysis of gradient decent depends on the eigen-
values of the matrix H. However, in real applications it may be difficult to
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(a) (b)

Figure 1.3: 1d plots showing the frequency response of a) h(ω) and the resulting function b)
p(ω) which determines the convergence rate of gradient decent for a step-size with good low
frequency convergence. Values of p(ω) close to 1 result in slow convergence, so it is clear that
for this problem gradient decent has slow high frequency convergence. In fact, this tends to
be a general property of gradient decent.

determine these eigenvalues. An important special case occurs when A rep-
resents a LSI filter, and in this case a more complete analysis is possible in
terms of the frequency response of the update iteration. Ignoring the finite
boundaries of the image, we can take the DSFT of (1.16) and rearrange terms
to yield

x(k+1)(ω) =
(

1− α
[

|a(ω)|2 + λ(1− g(ω))
])

x(k)(ω) + αa∗(ω)y(ω) (1.22)

If we further define ε(k)(ω) to be the DSFT of ε(k) = x(k) − x̂, then we can
derived the following recursion for the error in the computation of the MAP
estimate.

ε(k+1)(ω) =
(

1− α
[

|a(ω)|2 + λ(1− g(ω))
])

ε(k)(ω) (1.23)

Using the definition that

hs
4
= |a(ω)|2 + λ(1− g(ω)) ,

we have that

ε(k)(ω) = (1− αh(ω))k ε(0)(ω) .

So here we can see that the values of the frequency transform h(ω) are es-
sentially the eigenvalues of the tranformation H when the transforms are
all LSI. Furthermore, we know that h(ω) > 0 because due to the fact that
1 − g(ω) > 0. Therefore, we can derive equivalent conditions for the stable
selection of the update parameter

α <
2

maxω{h(ω)} , (1.24)

and we see that the slowest mode has convergence bounded below by

max
ω







ε̃(ω)(k)

ε̃
(0)
ω







>



1− 2

κ(h)





k

.
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where

κ(h) =
maxω h(ω)

minω h(ω)
.

Perhaps here the interpretation of the conditioning number, κ(h), is more
clear. A larger conditioning number means that the ratio of the maximum
and minimum gain in the filter h(ω) is large. This typically occurs when
the blurring filter has strong attenuation of high frequencies, but it can even
occur when there is not blurring.

To better understand this, consider the 1D example when a(ω) = 1, gn =
1
2 [δn−1 + δn+1], and λ = 10. In this case, there is no blurring and the noise
variance is large computed to the variation in x. From this we can calculate
that g(ω) = 1 − cos(ω), and h(ω) = 1 + 10(1 − cos(ω)), and the maximum
and minimum eigenvalues occur at ω = π and ω = 0 respectively, and have
the values hmax = 21 and hmin = 1. This means that in order to get stable
convergence at low frequencies we must choose α < 2/hmax. In fact, for the
best low frequency convergence, we need to choose α = 1/hmax = 1/21, so
we have

ε(k)(ω) = (1− (1 + 10(1− cos(ω))/21))k ε(0)(ω) .

The resulting frequency response of h(ω) and

p(ω) = (1− (1 + 10(1− cos(ω))/21))

are shown in Fig. 1.3.

When the function p(ω) is close to 1, the convergence of gradient decent
is slow. Therefore, we can see that for this example, the convergence is slow
at the high frequencies. In fact, this tends to be a general property of gradi-
ent decent. When solving problem in 2D, this means that the low frequency
shading and color tend to converge quickly, but the high frequency detail,
such as edges, converge slowly. This is a serious problem in imaging prob-
lems because typically edge content is particularly important in the perceived
quality of an image.

1.4 Steepest Decent Optimization

One partial solution to the problem of selecting a step size is to choose the
value of α at each iteration that minimizes the cost function. This algorithm
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Steepest Ascent: N = 10
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Figure 1.4: 2D contour plots of the trajectory of a) steepest decent optimization and b)
iterative coordinate decent optimization. Neither of these algorithms require the choice of a
step parameter α.

is called steepest decent.

The general form of the steepest decent optimization is given by

d(k) =
[

−∇f(x(k))
]t

(1.25)

α(k) = arg min
α≥0

f(x(k) + αd(k)) (1.26)

x(k+1) = x(k) + α(k)d(k) . (1.27)

So in steepest decent optimization, each gradient step is taken with the step
size that achieves the best minimum in that step. This computation of the
step size in (1.27) requires a minimization of a 1D function and is known as
a line search. Typically, it is possible to solve the line search by solving the
following equation.

∂f(x + αd)

∂α
= ∇f(x + αd)d = 0 (1.28)

In some cases, the line search required for steepest decent can be computa-
tionally intensive, but for the quadratic optimization we will see that the line
search can be computed in closed form with modest computation.

For the image restoration problem of (1.13), the step direction is given by

d(k) = 2At(y − Ax(k))− 2λBx(k) ; (1.29)

so using this gradient expression in (1.28) results in

α(k) =
||d(k)||2

2||d(k)||2H
(1.30)
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where H = AtA + λB, and the notation ||z||2W = ztWz for a positive definite
matrix W .

Figure 1.4(a) illustrates the results of steepest decent optimization on the
example function. Notice that the convergence is guarrented to be stable
because with each iteration the cost function is monotone decreasing.

f(x(k+1)) ≤ f(x(k))

If the cost function f(x) is bounded below, then we know that limk→∞ f(x(k))
converges to a limit.

1.5 Coordinate Decent Optimization

As we saw in Section 1.3.2, gradient decent has typically has slow conver-
gence at high spatial frequencies. In practice, most gradient based methods
tend to converge faster at low spatial frequencies for many important prob-
lems. One method to enhance convergence of high spatial frequencies is the
iterative coordinate decent (ICD) algorithm, which is also known as the
Gauss-Seidel algorithm. ICD works by updating each pixel in sequence while
keeping the remaining pixels fixed. One full iteration of ICD then consists of
a single update for each pixel.

The ICD algorithm is most easily specified using the assignment notation
of a programming language. Using this notation, the value of the pixel xs is
updated using the rule

xs ← arg max
xs∈<

f(x)

while the remaining pixels xr for r 6= s remain unchanged. The result of an
ICD update of the pixel s can be compactly expressed as x + αes where es is
a vector that is 1 for element s, and zero otherwise. Using this notation, we
have that

xs ← arg max
α∈<

f(x + αes) .

For the image restoration problem of (1.13), the ICD update can be com-
puted by using the quadratic form of the cost function. From this, we have
that

0 =
∂

∂α
f(x + αes)
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= −2(y − A(x + αes))
tAes + 2λ(x + αes)

tBes

= −2(y − Ax)tAes + 2λxBes + 2αet
s(A

tA + λB)es

= −2(y − Ax)tA∗,s + 2λxB∗,s + 2α[AtA + λB]s,s

where A∗,s represents the sth column of A. Solving for α yields

α =
(y − Ax)tA∗,s − λxtB∗,s

[AtA + λB]s,s
, (1.31)

which in turn results in the ICD update equation

xs ← xs +
(y − Ax)tA∗,s − λxtB∗,s

[AtA + λB]s,s
. (1.32)

As with gradient decent, an important special case of (1.32) occurs when
A represents a linear space-invariant filter as. In this case, multiplication by
A is equivalent to convolution with as; multiplication by At is equivalent to
convolution with a−s; and the ICD update has the form

xs ← xs +

∑

l al−s ∗ (yl − ∑

r al−r ∗ xr)− λ(xs − ∑

r gs−rxr)
∑

s as + λ
. (1.33)

When the point spread function is as = δs, then there is not blurring, and
the update equation has a simpler form which lends insight into the process.

xs ←
ys + λ

∑

r gs−rxr

1 + λ

Notice that in this case, the ICD update is a weighted balance between the
measurement, ys, and the average of the neighboring pixels,

∑

r gs−rxr. When
λ is large and the signal-to-noise is low, then the update is more similar to the
pixel’s neighbors; however, when λ is small and the signal-to-noise is high,
then the update is more similar measured data.

1.5.1 Convergence Analysis of Coordinate Decent

1.5.2 Frequency Analysis of Coordinate Decent

1.6 Preconditioned Conjugate Gradient Optimization



Appendix A

Convex Functions

Look at homework problems for items to cover.
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