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Application of MRF’s to Segmentation

e Topics to be covered:

— The Model

— Bayesian Estimation
— MAP Optimization

— Parameter Estimation

— Other Approaches
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Bayesian Segmentation Model

Y - Texture feature vectors
observed from image.

X - Unobserved field containing
the class of each pixel

e Discrete MRF is used to model the segmentation field.
e Each class is represented by a value X € {0,--- M — 1}
e The joint probability of the data and segmentation is

P{Y € dy, X =z} = p(y|z)p(z)
where

— p(y|x) is the data model

— p(x) is the segmentation model
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Bayes Estimation

o C'(x, X) is the cost of guessing x when X is the correct answer.
e X is the estimated value of X
e E[C(X, X)] is the expected cost (risk).

e Objective: Choose the estimator X which minimizes E[C/(X, X)].
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Maximum A Posteriori (MAP) Estimation

o Let Cx, X)=0d(x # X)
e Then the optimum estimator is given by

Xyap = arg max Py, (z]Y)

Py(Y, )
py(Y)

= argmax {log p(Y'|z) + log p(z)}

= argmax log

e Advantage:
— Can be computed through direct optimization
e Disadvantage:

— Cost function is unreasonable for many applications
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Maximizer of the Posterior Marginals (MPM)
Estimation[12]

o Let C(z, X) = 825(5(335 # X;)
e Then the optimum estimator is given by

XMPM = alg H}%prs\y@sly)
e Compute the most likely class for each pixel

e Method:

— Use simulation method to generate samples from p,, (z|y).

— For each pixel, choose the most frequent class.

e Advantage:
— Minimizes number of misclassified pixels
e Disadvantage:

— Difficult to compute
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Simple Data Model for Segmentation

e Assume:

— x5 € 40,---, M — 1} is the class of pixel s.

— Y, are independent Gaussian random variables with mean p,, and vari-

2
ance o .

(ylz) = 1I : : ( )’
2\Y|r) = CXPY—5 5 WYs — Uz,
Pyla\y s€8\2mo7 P179p2 W™ M

e Then the negative log likelihood has the form
—1 x — [ s|ts
08 Pylo(ylr) = L (ys]xs)

where

(= 0~ Lo

ys|xs) = T 952
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More General Data Model for Segmentation

e Assume:

— Y, are conditionally independent given the class labels X
— X, €{0,---, M — 1} is the class of pixel s.

e Then
—log py.(y|x) = ZSZ(ySIl’s)

SE&

where
Z<y3‘333> - 1ngy5\x5(ys‘x3)
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MAP Segmentation

e Assume a prior model for X € {0,---, M — 115 with the form
1

pile) = yeo{—8 = i)

1

= exp{—Sti(r)}

where C is the set of 4-point neighboring pairs
e Then the MAP estimate has the form
& = argmin{—log p,.(ylz) + Bt:(z)}

= argmin{ ¥ l(yslz,) + 6 ¥ Oz # ;)
sesS {i,j}eC

e This optimization problem is very difficult
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An Exact Solution to MAP Segmentation

e When M = 2, the MAP estimate can be solved exactly in polynomial time
— See |9] for details.

— Based on minimum cut problem and Ford-Fulkerson algorithm [5].
— Works for general neighborhood dependencies

— Only applies to binary segmentation case
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Approximate Solutions to MAP Segmentation
e Iterated Conditional Models (ICM) [2]

— A form of iterative coordinate decent

— Converges to a local minima of posterior probability
e Simulated Annealing [0]

— Based on simmulation method but with decreasing temperature
— Capable of “climbing” out of local minima

— Very computationally expensive
e MPM Segmentation [12]

— Use simulation to compute approximate MPM estimate

— Computationally expensive
e Multiscale Segmentation [3]

— Search space of segmentations using a course-to-fine strategy

— Fast and robust to local minima
e Other approaches

— Dynamic programming does not work in 2-D. but approximate recursive solutions to
MAP estimation exist[4, 13]

— Mean field theory as approximation to MPM estimate[14]
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Iterated Conditional Modes (ICM) |2]

e Minimize cost function with respect to the pixel x,

{i.jtec

= argrr%in{ (yr|xr) + 8 X 0(xs #

SEDT

= arg D:%}’H {l<yr‘xr> + ﬁvl (Zlir, lear)}

T, = argrr%;n {S§5l<ys‘x5>+6 > 0w 7’é33']>}

e [nitialize with the ML estimate of X

Tl = arg min 1(ys[m)

11
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ICM Algorithm

ICM Algorithm:
1. Initialize with ML estimate

Ty e arg min (y[m)
2. Repeat until no changes occur
(a) For each s € S

Ts <— arg 0<I7I71112M U(yslm) + Boi(m, zas) ;

e For each pixel replacement, cost decreases = cost functional converges
e Variation: Only change pixel value when cost strictly decreases

e [CM -+ Variation = sequence of updates converge in finite time

e Problem: ICM is easily trapped in local minima of the cost functional
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Low Tempurature Limit for Gibb Distribution

e Consider the Gibbs distribution for the discrete random field X with tem-
purature parameter 1’

pr(x) = 1 exp {—1U(aj)}

o For x # ZTyrap, then U(Zy4p) < U(x) and

- pr(®mar) 1 .
i priz) IJ%GXP{TW@ N U(xMAP»}
= 0

Since pr(zyap) < 1, we then know that x # Tyap

%iﬁ%pT@?) =0

So it Z74p 1S unique, then

12/1’5% pr(Taap) =1
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Low Temperature Simulation

e Sclect “small” value of T'

e Use simulation method to generate sample X* form the distribution

pr(e) =  exp| U (@)

o Then pr(X™) = pr(Zarap)

e Problem:

T too large = X* is far from MAP estimate

T" too small = convergence of simulation is very slow
e Solution:

Let T" go to zero slowly

Known as simulated annealing

14
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Simulated Anealing with Gibbs Sampler|6]

Gibbs Sampler Algorithm:
1. Set N = # of pixels
2. Select “annealing schedule”: Decreasing sequence T},
3. Order the N pixels as N = s(0),---,s(N — 1)
4. Repeat for £ =0 to oo

(a) Form X*+D from X% via

W ifr =s(k)
(k+1) _
X { X if r £ s(k)

r

where W ~ pr, (Zlfs(k) |X§2k)>

e For example problem:

Ulx)= X%

oy Z(ys‘xs) + 6751(33)

and
1 (2 20:) = exp |~ (geles) + Bon(zor ) )|

15
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Convergence of Simulated Annealing [6]

e Definitions:

— N - number of pixels
— A = argmax, U(z) — argmin, U(x)

Let
i NA

- log(k + 1)

1y

Theorem: The the simulation converges to Zj;4p almost surely. |6]
e Problem: This is very slow!!!
e Example: N = 10000, A =1 = T,i000_; = 1/2.
e More typical annealing schedule that achieves approximate solution

TK k/K
-
k 0 T()

16
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Segmentation Example

e [terated Conditional Modes (ICM): ML ; ICM 1; ICM 5; ICM 10
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Maximizer of the Posterior Marginals (MPM)
Estimation[12]

o Let Cx, X) = SES(S(:US # X)
e Then the optimum estimator is given by

XMAP — arg mQXPxS|Y($s|Y)
e Compute the most likely class for each pixel

e Method:

— Use simulation method to generate samples from p,, (z|y).

— For each pixel, choose the most frequent class.

e Advantage:
— Minimizes number of misclassified pixels
e Disadvantage:

— Difficult to compute

18
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MPM Segmentation Algorithm [12]

e Define the function

X «— Simulatfi(sz't,px\y@‘y))

This function applies one full pass of a simulation algorithm with stationary
distribution p,,(x|y) and starting with initial value Xj,;.

MPM Algorithm:

1. Select parameters M; and M,
2. For1 =0to M; —1
(a) Repeat Ms times
X «— Simulate(X, py,(x|y))

(b) Set X1 — X

3. For each s € S, compute

My—1

T < are max
> gO§m<M igo

) (X(i) = m)




EE641 Digital Image Processing 1I: Purdue University VISE - October 23, 2006 20

Multiscale MAP Segmentation

e Renormalization theoryl§]

— Theoretically results in the exact MAP segmentation
— Requires the computation of intractable functions

— Can be implemented with approximation
e Multiscale segmentation|3]

— Performs ICM segmentation in a coarse-to-fine sequence

— Each MAP optimization is initialized with the solution from the previous
coarser resolution

— Used the fact that a discrete MRF constrained to be block constant is
still a MRF.

e Multiscale Markov random fields|10]
— Extended MRF to the third dimension of scale

— Formulated a parallel computational approach
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Multiscale Segmentation [3]

e Solve the optimization problem

TMAP = arg mlin{ > Uyslzs) + Bita(z) + 52752(33)}

seS
e Break x into large blocks of pixels that can be changed simultaneously
e Make large scale moves can lead to

— Faster convergence

— Less tendency to be trapped in local minima

21
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Formulation of Multiscale Segmentation [3]

e Pixel blocks
— The s block of pixels
d(s) = {(i,5) € S ([i/2"), [5/2"]) = s}

— Example: If £ = 3 and s = (0,0), then
d(k)(s) — [(070)7 Ty (77 O)? (Oa 1)7 Ty (77 1)7 Ty (Ov 7)7 Ty (77 7)]

e Coarse scale statistics:

— We say that z is 28-block-constant if there exists an z® such that for

all 7 € d¥)(s)

T, = $gk>

— Coarse scale likelihood functions

Fm) = = Uy|m)

— Coarse scale statistics
0 St (aW) 8 2y (@)
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Recursions for Likelihood Function

e Organize blocks of image in quadtree structure

e Let d(s) denote the four children of s, then
(Wim)= s 1" Dim)

red(s) "

where 1 (m) = I(ys|m).
e Complexity of recursion is order O(N) for N = # of pixels

23
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Recursions for MRF Statistics

e Count statistics at each scale
Image X Image x”
1 1-—0 0

1 1 1 1

1 lé
/

PrP==0

1 1

_ 0) — - 1) —
@EO) = @El) =
o If = is 2¥-block-constant, then
(Y = o

£y = 2t )
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Parameter Scale Recursion [3]

e Assume z is 2%-block-constant. Then we would like to select parameters
ﬂ%k) and ﬁék) so that the energy functions match at each scale.

This means that

BV + B9 — G 4

e Substituting the recursions for tgk) and tgk) yeilds recursions for the param-
(k) (k)
eters By and 35",

o =20 e )
o = g
e Courser scale = large 3 = more smoothing

e Alternative approach: Leave (3’s constant
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Multiple Resolution Segmentation (MRS) [3]

MRS Algorithm:
1. Select coarsest scale L and parameters 6{16) and 6§k)
2. Set 10 (m) « I(y,|m).
3. For k =1 to L, compute: I{M(m) = 5,cq05 "D (m)
4. Compute ML estimate at scale L: ") « arg ming<,,<7 [(2)(m)

5. For k=L to0

a) Perform ICM optimization using inital condition &) until converged
g s g

R TOM (@(k)yu(k‘)(.))

where
u® (#0) = SO E0) + a0 + a0

(b) if £ > 0 compute initial condition using block replication
%=V — Block_Replication(:™)

6. Output &
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Texture Segmentation Example

al|b

C

d

27

a) Synthetic image with 3 textures b) ICM - 29 iterations ¢) Simulated

Annealing - 100 iterations d) Multiresolution - 7.8 iterations
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Parameter Estimation

Random Field
[ Model I _’l Physical SyStemHData Collectlon]

9 <P

e (Question: How do we estimate 6 from Y7

e Problem: We don’t know X!

e Solution 1: Joint MAP estimation [11]

(0, &) = arg max p(y, ()

Y

— Problem: The solution is biased.

e Solution 2: Expectation maximization algorithm [1, 7]
o"1 = arg max Ellogp(Y, X|0)|Y =1y, 0"]

— Expectation may be computed using simulation techniques or mean field
theory.
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