
Chapter 1

Markov Chains and Hidden Markov

Models

In this chapter, we will introduce the concept of Markov chains, and show
how Markov chains can be used to model signals using structures such as
hidden Markov models (HMM). Markov chains are based on the simple idea
that each new sample is only dependent on the previous sample. This simple
assumption makes them easy to analyze, but still allows them to be very
powerful tools for modeling physical processes.

1.1 Markov Chains

A Markov chain is a discrete-time and discrete-valued random process in
which each new sample is only dependent on the previous sample. So let
{Xn}

N
n=0 be a sequence of random variables taking values in the countable

set Ω.

Definition: Then we say that Xn is a Markov chain if for all values of
xk and all n

P{Xn = xn|Xk = xk for all k < n} = P{Xn = xn|Xn−1 = xk−1} .

Notice that a Markov chain is discrete in time and value. Alternatively, a
Markov process which is continuously valued and discrete in time is known
as a discrete-time Markov process. We will primarily focus on Markov chains
because they is easy to analyze and of great practical value. However, most
of the results we derive are also true for discrete-time Markov processes.
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Figure 1.1: Three figures illustrating three distinct behaviors of the Markov chain example
with ρ = 0.1, 0.5, and 0.9.

In order to analyze a Markov chain, we will first define notation to describe
the marginal distribution of Xn and the probability of transitioning from state
Xn−1 to state Xn as

π
(n)
j

4
= P{Xn = j}

P
(n)
i,j

4
= P{Xn = j|Xn−1 = i}

for i, j ∈ Ω. If the transition probabilities, P
(n)
i,j , do not depend on time,

n, then we say that the Markov chain is homogeneous. Note, that a ho-
mogeneous Markov chain may have time varying distribution because of the
transients associated with an initial condition, but we might hope that a
homogeneous Markov chain will reach a stationary distribution given a long
enough time. We will discuss this later in more detail. For the remainder
of this chapter, we will assume that Markov chains are homogeneous unless
otherwise stated.

From the Markov process, we can derive an expression for the probability
of the sequence {Xn}

N
n=0. The probability of the sequence is the product

of the probability of the initial state, denoted by ρx0
, with each of the N

transitions from state xn−1 to state xn. This product is given by

p(x) = ρx0

N
∏

n=1

Pxn−1,xn
.

From this expression, it is clear that the Markov chain is parameterized by
its initial distribution, ρi, and its transition probabilities, Pi,j.
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Example 1.1.1: Let {Xn}
N
n=0 be a Markov chain with Ω = {0, 1} and param-

eters

ρj = 1/2

Pi,j =







1− ρ if j = i

ρ if j 6= i

This Markov chain starts with an equal chance of being 0 or 1. Then with
each new state, it has probability ρ of changing states, and probability 1− ρ

of remaining in the same state. If ρ is small, then the Markov chain is likely
to stay in the same state for a long time. When ρ = 1/2 each new state will
be independent of the previous state; and when ρ is approximate 1, then with
almost every value of n, the state is likely to change. These three cases are
illustrated in Figure 1.1. If we can define the statistic

K = N −
N
∑

n=1

δ(Xn −Xn−1) ,

then K is the number of times that the Markov chain changes state. Using
this definition, we can express the probability of the sequence as

p(x) = (1/2)(1− ρ)N−KρK .

1.2 Parameter Estimation for Markov Chains

Markov chains are very useful for modeling physical phenomena, but even
homogeneous Markov chains can have many parameters. In general, an M =
|Ω| state Markov chain has a total of M 2 parameters. 1 When M is large, it
is important to have effective methods to estimate these parameters.

Fortunately, we will see that Markov chains are exponential distributions
so parameters are easily estimated from natural sufficient statistics. Let
{Xn}

N
n=0 be a Markov chain parameterized by θ = [ρi, Pi,j : for i, j ∈ Ω],

and define the statistics

τi = δ(X0 − i)

Ki,j =
N
∑

n=1

δ(Xn − j)δ(Xn−1 − i) .

1The quantity M2 results from the sum of M parameters for the initial state plus M(M − 1) parameters
for the transition probabilities. The value M(M − 1) results form the fact that there are M rows to the
transition matrix and each row has M − 1 degrees of freedom since it must sum to 1.
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Figure 1.2: This diagram illustrates the dependency of quantities in a hidden Markov model.
Notice that the values Xn form a Markov chain in time, while the observed values, Yn, are
dependent on the corresponding label Xn.

The statistic Ki,j essentially counts the number of times that the Markov
chain transitions from state i to j, and the statistic τi “counts” the number
of times the initial state has value i. Using these statistics, we can express
the probability of the Markov chain sequence as

p(x|x0) =
∏

i∈Ω

∏

j∈Ω

[ρi]
τi[Pi,j]

Ki,j

which means that the log likelihood has the form

log p(x|x0) =
∑

i∈Ω

∑

j∈Ω

{τi log[ρi] + Ki,j log[Pi,j]} . (1.1)

Based on this, it is easy to see that Xn has an exponential distribution and
that τi and Ki,j are its nature sufficient statistics. From (1.1), we can derive
the maximum likelihood estimates of the parameter θ in much the same
manner as is done for the ML estimates of the parameters of a Bernoulli
sequence. This results in the ML estimates

ρ̂i = τi

P̂i,j =
Ki,j

∑

j∈Ω Ki,j

.

So the ML estimate of transition parameters is quite reasonable. It simply
counts the rate at which a particular i to j transition occurs.

1.3 Hidden Markov Models

One important application of Markov chains is in hidden Markov models
(HMM). Figure 1.2 shows the structure of an HMM. The discrete values
{Xn}

N
n=0 form a Markov chain in time, and their values determine the distri-

bution of the observations Yn. Much like in the case of the Gaussian mixture
distribution, the labels Xn are typically not observed in the real applica-
tion, but we can imagine that their existence explains the change in behavior
of Yn over long time scales. The HMM model is sometimes referred to as
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doubly-stochastic because the unobserved stochastic process Xn controls the
observed stochastic process Yn.

***Put some more discussion of applications here****

Let the density function for Yn given Xn be given by

P{Yn ∈ dy|Xn = k} = f(y|k)

and let the Markov chain Xn be parameterized by θ = [ρi, Pi,j : for i, j ∈ Ω],
then the density function for the sequences Y and X are given by 2

p(y, x|θ) = ρx0

N
∏

n=1

{

f(yn|xn)Pxn−1,xn

}

.

and assuming the no quantities are zero, the log likelihood is given by

log p(y, x|θ) = log ρx0
+

N
∑

n=1

{

log f(yn|xn) + log Pxn−1,xn

}

.

There are two basic tasks which one typically needs to solve with HMMs.
The first task is to estimate the unknown states Xn from the observed data,
Yn, and the second task is to estimate the parameters θ from the observations
Yn. The following two sections explain how these problems can be solved.

1.3.1 MAP State Sequence Estimation for HMMs

One common estimate for the states, Xn, is the MAP estimate given by

x̂ = arg max
x∈ΩN

p(y, x|θ) . (1.2)

Interestingly, the optimization of (1.2) can be efficiently computed using dy-

namic programming. To do this, we first define the quantity L(k, n) to be the
log probability of the state sequence that results in the largest probability
and starts with the value Xn = k. The values of L(k, n) can be computed
with the recursion

L(k, n− 1) = arg max
j∈Ω
{log f(yn|j) + log Pk,j + L(j, n)}

2This is actually a mixed probability density and probability mass function. This is fine as long as one
remembers to integrate over y and sum over x.
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with the initial condition that L(k, N) = 0. Once these values are computed,
the MAP sequence can be computed by

x̂0 = arg max
k∈Ω
{L(k, 0) + log ρk}

x̂n = arg max
k∈Ω

{

log Px̂n−1,k + log f(yn|k) + L(k, 0)
}

1.3.2 Training HMMs with the EM Algorithm

It order to Train the HMM, it is necessary to estimate the parameters for
the HMM model. This will be done by employing the EM algorithm, so we
will need to derive both the E and M-steps. In a typical application, the ob-
serve quantity Yn is a multivariate Gaussian random vector with distribution
N(µxn

, Rxn
), so it is also necessary to estimate the parameters µk and Rk for

each of the states k ∈ Ω.

In this case, the joint distribution p(x, y|θ) is an exponential distribution
with parameter vector θ = [µi, Ri, ρi, Pi,j : for i, j ∈ Ω], and natural sufficient
statistics given by

t1,k =
N−1
∑

n=0

Ynδ(xn − k)

t2,k =
N−1
∑

n=0

YnY
t
nδ(xn − k)

Nk =
N−1
∑

n=0

δ(xn − k)

τk = δ(X0 − k)

Ki,j =
N
∑

n=1

δ(Xn − j)δ(Xn−1 − i) .

The ML estimate of θ can then be calculated from the sufficient statistics as

µ̂k =
t1,k
Nk

R̂k =
t2,k
Nk

−
t1,k tt1,k

N 2
k

ρ̂i = τi

P̂i,j =
Ki,j

∑

j∈Ω Ki,j

.
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From this and the results of the previous chapter, we know that we can
compute the EM updates by simply substituting the natural sufficient statis-
tics with their conditional expectation given Y . So to computer the EM
update of the parameter θ, we first compute the conditional expectation of
the sufficient statistics in the E-step as

t̄1,k =
N−1
∑

n=0

YnP{Xn = k|Y = y, θ}

t̄2,k =
N−1
∑

n=0

YnY
t
nP{Xn = k|Y = y, θ}

N̄k =
N−1
∑

n=0

P{Xn = k|Y = y, θ}

τ̄k = P{Xn = k|Y = y, θ}

K̄i,j =
N
∑

n=1

P{Xn = j, Xn−1 = i|Y = y, θ} ,

and the HMM model parameters are then updated using the M-step

µ̂k ←
t1,k
Nk

R̂k ←
t2,k
Nk

−
t1,k tt1,k

N 2
k

ρ̂i ← τi

P̂i,j ←
Ki,j

∑

j∈Ω Ki,j

.

While the M-step for the HMM is easily computed, the E-step requires the
computation of the posterior probability of Xn given Y . However, this is not
easily computed using Bayes rule due to the time dependencies of the Markov
chain. Fortunately, there is a computationally efficient method for computing
these posterior probabilities that exploits the 1D structure of the HMM. The
algorithms for doing this are known as the forward-backward algorithms due
to there forward and backward recursion structure in time.

The forward recursion is given by

α1(i) = ρi

αn+1(j) =
∑

i=Ω

αn(i)Pi,jp(yn+1|j)
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The backward recursion is given by

βN(i) = 1

βn+1(i) =
∑

j=Ω

Pi,jp(yn+1|j)βn+1(j)

From this the required posterior probabilities can be calculated as

P{Xn = k|Y = y, θ} =
αn(i)βn(i)

p(y)

P{Xn = j, Xn−1 = i|Y = y, θ} =
αn−1(i)p(yn|j)Pi,jβn(i)

p(y)

where
p(y) =

∑

i∈Ω

αn(i)βn(i) .


