Chapter 1

Clustering and the EM Algorithm

Notation

e N - number of time samples
e VM - number of states
e Lk - index of states

e [, - dimension of observation vector

Imagine the following problem. You have measured the height of each
plant in a garden. There are N plants, and you know that some have been
regularly fertilized, and the remainder have not been fertilized at all. Un-
fortunately, fertilizing records were lost, and you no longer know which were
fertilized, and which were not.

Your measurements, Y,,, of the plant height for the n'* plant could have
been modeled as Gaussian with mean p and variance o2 if they had all been
treated equally; but since they have not, the fertilized plants will, on average,
be taller.

Since we have lost the fertilization records, we can model this unknown
by a random variable X, which is 0 if the plant has not been fertilized and
1 if it has. With this assumption, then it is reasonable to model the hight,
Y., as conditionally Gaussian with distribution N(u1,07) if the plant was
fertilized, and N (pg, 09) if it was not. The complete stochastic model for

Figure 1.1: Example of the distribution we might expect in plant height for the two popu-
lations. Notice that the two populations create two modes in the distribution.
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this problem is then that {X,}) = are i.i.d. Bernoulli random variables with
P{X, =k} =m, for k € {0,1}, and {Y;,}=}' are conditionally i.i.d. Gaussian
with distribution N(ux,,ox,). The value X,, is sometimes referred to as a
label because it specifies the population to which Y,, belongs. Notice, that pa-
rameters of the conditional distribution, py, and ox,, are both dependent on
the random variable X. This type of stochastic process is sometimes referred
to as a doubly stochastic process due to this structure. The parameters of this
doubly stochastic process (Y, X,,) are then given by 6 = [ug, 03, ju1, 0%, 70, m1]
where T + m = 1.

The question then arises of how to estimate the parameter 6 of this dis-
tribution? This is an important practical problem because we may want to
measure the effect of fertilization on plant growth, so we would like the know
how much pg and py differ. Figure 1.1 illustrates the situation. Notice that
the two populations create two modes in the distribution of plant height. In
order to estimate the mean of each mode, it seems that we would need to know
X,,, the label of each plant. However, casual inspection of the distribution of
Fig. 1.1 suggests that one might be able to estimate the unknown means, p
and p1, by looking at the combined distribution of the two populations.

One possibility for estimating pp and pp is to first estimate the labels
X,,. This can be done by applying a threshold at the valley between the two
modes, and classifying the value.

T 0 Y, < threshold
"1 1Y, > threshold

The results of this classification can be more compact represented by the two
sets Sp = {n : X, = 0} and S; = {n : X,, = 1}. With the result of this
classification, we can the estimate the two means

R 1

Ho = 1o 7 Z Y,
|SO| {n:X,,=0}

R 1

T = 57 Z Yn ;
|Sl| {n:X,=1}

where |Sy| and |S| denote the number of plants that have been classified as
unfertilized and fertilized respectively, and then [y and [i; are the means of
the two groups.
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While this is an intuitively appealing approach, it has a very serious flaw.
Since we have separated the two groups by their hight, it is inevitable that
we will measure a larger value for p; than for pg. In fact, even when the
two means are quite different the resulting estimates of [y and ji; will be
systematically wrong no matter how large the value of N. This is much
worse than simply being biased, these estimates are inconsistent because the
estimated values do not converge to the true parameters as N — oo.

Another approach to solving this estimation problem is to attempt to
directly estimate the value of the parameter vector 6 = [ug, 03, 1, 03, 70, 1]
from the data Y using the ML estimate. Formally, this can be stated as

0 = arg maxlog p(y|0) -

This seems to be a much more promising approach since it is known that the
ML estimate is not only consistent, but it is asymptotically efficient, which
means that asymptotically achieves the accuracy of the Cramer-Rao bound.
[7] However, there is still a problem. The distribution p(y|6) is not explicitly
available for this problem. In fact, it requires the evaluation of a sum that
makes direct ML estimate difficult.

p(ylo) = ;p(y,x\G)p(afIG)

So simple closed form expressions for the ML estimate are no longer possible.

The purpose of the expectation-maximization (EM) algorithm is to provide
systematic methodology for estimating parameters such as p; when there is
missing data, X,. In particular, the EM algorithm provides a method for
determining the ML estimates of the complete parameter vector, 6, which
in turn contains the estimates of pzi. The EM algorithm is quite clever and
perhaps surprising, but it results in some very intuitive algorithms when it is
properly applied. In fact, the EM algorithm is more than a simple algorithm.

The following sections will lay out the different aspects of the EM algo-
rithm. One way of thinking about the EM algorithm is as a set of inequalities
that insure that each step of the EM recursion will improve the likelihood of
a parameter estimate. In addition, there are important graphical interpre-
tations of the EM algorithm as a special case of a more general method for
optimization using substitute functionals. Finally, we will present a general
formulation of the EM algorithm for exponential distributions.
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1.1 EM Algorithm Inequalities and Recursions

The EM algorithm is based on the concept that you can separate the log
likelihood into the sum of two functions.

log p(yl6) = Q(0',0) + H(H',0)
where

E logp(y, X|0")Y =y, 0]
—E [logp(X|y,0)|Y =y, 0]

> e

To see this result, we have the following sequence of equalities.

logp(ylt") = E[logp(ylt")|Y = y.0]
p(y, x|0") }l ]
[ ; {p<x|y, 11
= Elogp(y, z|0)Y = y,0] — E[log p(xly, 0)[Y =y, 0]
= Q,0)+ H(0)
where we use the fact that p(y, z|0") = p(z|y, ¢ )p(y|6) for the second equality.

Of course, this result is only valid when p(y, z|0) is guaranteed to be strictly
positive for all 0 € ©.

The key insight is then that the function H(6',60) takes on its minimum
value when 6’ = 6. More precisely, for all # € © and for all § € O, we have
that

H(0,0) < arg min H(0',0) (1.1)

To see that this is true, we have the following set of inequalities

0 = log{/p x\y,@’)daz}
_ p(zly, 0
— {/ ol 0 )p \y,e)dx}
> [rog {2 ety

= [logp(aly,0')p(xly, 0)dz — [logp(zly, 0)p(x]y, 0)dx
= H(#,0)— H(6,0)
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Using this insight, yields the fundamental result of the EM algorithm.
Increasing the value of the function Q(6',0), we are guaranteed to increase
the value of the likelihood. More precisely, for all # € © and for all 8 € O,
we have that if Q(60',0) > Q(6,0), then we know that p(y|0’) > p(y|f). The
proof of this key result is then quite simple.

logp(yl0) = Q¢',0)+ H(9',0)
> Q(6,0) + H(0,0)
= logp(y|9)

With is in hand, we have the basic recursion that defines the EM algorithm.
(k+1) _ (k)
0 arg max Q6,0 (1.2)

where
Q(E',0) = E[logp(y, X|0")|Y =y, 0]

1.2 Clustering with EM Algorithm

1.3 Convergence and Optimization using Substitute Func-
tions

1.4 General Methods for EM Updates with Exponen-
tial Distributions

While the calculation of the () function is typically complex, it is clear that
there is a general pattern to the result. For example, in the clustering ex-
ample of Section 1.2 the final EM update equations appear much like the
conventions ML estimates, except that the means are weighted by the prob-
ability that an sample is from the particular class. This pattern turns out
to have a underlying explanation which can be used to make derivation of
the EM updates much simpler. In fact, it turns out that for all exponential
distributions, the form of the EM update is quite simple.

In the following chapter, we introduce the concepts necessary to under-
stand this simplification, and we show how to derive EM updates for any
distribution with exponential form.
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1.4.1 Exponential Distributions and their Natural Sufficient Statis-
tics

In order to derive the simplified form of the EM update, we first must in-
troduce the concept of an exponential distribution and its natural sufficient
statistics. We base our definitions on a N dimensional random vector Y with
density function p(y|0) with parameter vector # € ©. Then we have the
following two important definitions.

Definition: A statistic is any function T'(Y') of the data Y.

Definition: We say that a statistic T(Y") is a sufficient statistic for 0 if
there exist functions g(-,-) and A(-) such that

p(y|0) = h(y) 9(T(y),0) (1.3)
for all y € RN and 6 € ©.

Inituitively, a sufficient statistic distills all the information from the data,
Y| necessary to estimate the parameter 6. For example, the ML estimator of
6 must be a function of the sufficient statistic 7'(Y'). To see this, notice that

Orr = argmaxlogp(y|d)
= argmax {log h(y) + log g(T(y), 0)}
= argmaxlog g(7'(y),0)
= f(T(y))

for some function f(-).

Many commonly used distributions such as Gaussian, exponential, Pois-
son, Bernoulli, and binomial have a structure which makes them particularly
useful. These distributions are known as exponential families and have the
following special property.

Definition: A family of density functions p(y|f) for y € RY and § € ©
is said to be a k-parameter exponential family if there exist functions

g(0) € IRF, s(y), d(0) and statistic T'(y) € IR* such that

p(yl0) = exp{< g(0),T(y) > +d(0) + s(y)} (1.4)
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for all y € IRY and § € © where < -,- > denotes the inner product. We
refer to T'(y) as the natural sufficient statistic or natural statistic for the
exponential distribution.

Exponential distributions are extremely valuable because the log of its den-
sity forms an inner product that is easily manipulated when computing ML
parameter estimates.

Here are some examples of exponential distributions and their natural
sufficient statistics.

Ezample 1.4.1: Let {Y,})=' be ii.d. random variables with distribution
N(u,1) and parameter 6 = [u]. Then p(y|f) is an exponential distribution
with natural sufficient statistic

and the ML estimate of 6 is given by

t1

K= N

The proof of this fact is given in Appendix A.1.

So here we see that the sample average, which is the ML estimate of the
mean for i.i.d. Gaussian random variables, can be expressed as t1/N. We can
extend this same structure to the case when both the mean and variance are
unknown.

Example 1.4.2: Let {Y,,})2! be ii.d. random variables with distribution
N(u,0?) and parameter = [u,0%]. Then p(y|6) is an exponential distribu-
tion with natural sufficient statistics

N—1
tl — Z Yn
n=0
N-1
ty = Y72,
n=0
and the ML estimate of 6 is given by
. h
PN

.9 to <t1>2
oF = = — =] .
N N
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The proof of this fact is given in Appendix A.2.

The example can be further generalized by allowing the observations, Y,
to be multivariate Gaussian vectors. In this case, the parameters are the
mean and covariance of the Gaussian vector, and the ML estimates are given
by the sample average and the sample covariance.

Example 1.4.3: Let {Y,})=} be i.i.d. random vectors of dimension L with
distribution N (p, R) and parameter 6 = [u, R]. Then p(y|6) is an exponential
distribution with natural sufficient statistics

N-1

tl - Yn
n=0
N-1

ty = Y YY",
n=0

and the ML estimate of 6 is given by

.4
=N
Lty tith
N N2

The proof of this fact is given in Appendix A.3.

We will also be very interested in the Bernoulli distribution which is also
exponential. Bernoulli random variables can be thought of as the outcome of
a coin flip, for an unfair coin where the probability of “heads” is 71, and the
probability of “tails” is mp = 1 — 7ry.

Example 1.4.4: Let {X,}22} be i.i.d. random variables with the Bernoulli
distribution given by P{X, = 0} = my and P{X,, = 1} = m; and parameter
0 = [mp, m1]. Then p(z|@) is an exponential distribution with natural sufficient
statistics

Ny = Nz_:lé(Xn)

n=

No= Y 6(X, —1)

n=0

o
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where §(-) is a Kroniker delta function, and the ML estimate of € is given by

. Ny
o = ——
0 N
. Ny
T = —
! N

The proof of this fact is given in Appendix A.4.

For clustering problem of Section 1.2, we had an observed vector of N con-
ditionally Gaussian random variables Y,,, and a corresponding set of binary
random variables which determined their distribution. More specifically, Y,
was conditionally Gaussian with mean and variance given by p, and agn, and
X, are i.i.d. Bernoulli random variables with parameters 7y and 7. In this
case, the joint distribution of both ¥ and X is exponential with parameter

_ 2 2
8 = [,uo,O'O,,ul,O'lﬂT(),ﬂ'l].

Ezample 1.4.5: Let {X,,}Y-' bei.i.d. Bernoulli random variables with P{X, =
0} = mp and P{X,, =1} = 7 = 1 — m. Let {¥,})' be conditionally i.i.d.
Gaussian random variables with conditional mean and variance given by
and agn respectively. Then p(y, x|0) is an exponential distribution with pa-
rameter 6 = [, 03, pi1, 0%, mo, 1| and natural sufficient statistics

N-1

Ny = Z 5(xn_k) (1'5)
n=0
N-1

tl,kz - Z yné(xn_k) (1'6>
n=0
N-1 )

b = 3 20— k) (1.7
n=0

where k£ € {0,1} and the ML estimate of 6 is given by

. U1k

o 1.8
fu N, (1.8)
t t 2\ 2

A9 2.k 1,k

— 2k _ (LK 1.9
%k N, (Nk> (1.9)
A N
Ae = ]\f (1.10)

The proof of this fact is given in Appendix A.5.
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Of course the problem with the ML estimates of (1.8), (1.9), and (1.10)
is that we we may not know the labels X,,. This is the so called incomplete
data problem that the EM algorithm addresses. In the next section, we will
see how the EM algorithm can be simply derived for any such exponential
distribution.

1.4.2 General Formulation of EM Update

One reason that the EM algorithm is so useful is that for many practical
situations the distributions are exponential, and in this case the EM updates
have a particularly simple form. Let Y is the observed or incomplete data and
let X be the unobserved data, and assume that the joint density of (Y, X) is
from and exponential family with parameter vector §. Then we know that

p(y, z|0) = exp{< g(0), T'(y,x) > +d(0) + s(y, )}

for some natural sufficient statistic T'(y, x). Assuming the ML estimate of ¢
exists, then it is given by

Onr = argrgle%x{< g(0), T(y,x) > +d(9)} (1.11)
= [(T(y,2)) (1.12)

where f(-) is some function of T'(y, x).

Recalling the form of the () function, we have
Q(0',0) = E[logp(y, X[¢)|Y =y, 0]

where Y is the observed data and X is the unknown data. Using the assumed
structure of the exponential distribution, we have that

Q(0',0) = Elogp(y, X|0")|Y = y,0]
= E[<g(0),T(y,X) > +d(0) + s(y, X)|Y =y, 0]

= <g(@),T(y) > +d(0") + constant

where
T(y) = E[T(y, X)|Y =y,0]

is the conditional expectation of the sufficient statistic T'(y, z), and constant
is a constant which does not depend on €’. Since our objective is to maximize
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() with respect to ¢, this constant can be dropped. A single update of the
EM algorithm is then given by the recursion

0" = argg;gg@(@/,@) (1.13)
= argmax {< g(¢), T(y) > +d(0')}
= f(T(y))

Intuitively, we see that the EM update has the same form as the computation
of the ML estimate, but with the expected value of the statistic, T', replacing
the actual statistic, 7.

To see how useful this result can be, we can use it to easily derive the EM
update parameters so for the clustering Example 1.4.5.

Ezample 1.4.6: Let {X,,})= be i.i.d. Bernoulli random variables with param-
eters [m, m], and let {Y,}2} be conditionally i.i.d. Gaussian random vari-
ables with conditional mean and variance given by j,, and o2 respectively.
We would like derive the EM updates for the parameters 6 = [, 03, ji1, 03, 7o, 1]
assuming that Y is observed, but X is not. We know from Example 1.4.5
that p(y, x|@) is an exponential distribution with natural sufficient statistics
given by equations (1.5), (1.6), and (1.7), and ML parameter estimates given
by (1.8), (1.9), and (1.10).

In order to derive the EM update, we only need to replace the sufficient
statistics in the ML estimate by their expected values. So to compute the
EM update of the parameter 6, we first compute the conditional expectation
of the statistics in the E-step

_ N-1
N, = 3 P{X,=kY =y,0
n=0

~ N-1
e = Y yP{X,=k|Y =y,0}
n=0

_ N-1
tQ,k = Z yELP{Xn = le - 97‘9} .
n=0

and then then we use these new statistics to computed updated values of the
parameters in the M-step.
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~9 t2,l<; (tl,k
< —_—_ —

)2 (1.15)

k N. N,
X N,
Fr e ]\f (1.16)

By repeating this process, we increase the likelihood of the observations.
Assuming that the likelihood has a minimum ' and that one is not trapped in
a local minimum, then repeated application of the EM iterations will converge
to the ML estimate of 6.

IFor the case of a Gaussian mixture with no lower bound on 0,3, the likelihood is not bounded. However,
in practice a local minimum of the likelihood usually provides a good estimate of the parameters.



Appendix A

EM Algorithm Derivations

This appendix contains derivations of results from Chapter 1.

A.1 Example 1.4.1 Derivation

Let {Y,,})7) be i.i.d. random variables with distribution N (u, 1). Define the
following statistic corresponding to the sample mean of the random variables.

N-1
1 = Z Yn
n=0

By writing the density function for the sequence Y as

Yo }eXp{;(%m - Nu2)}

— ( = { (JVX_: y2 42/ )}exp{—];](tl/N—u)z},

where we can see that it has the form of equation (1.3). Therefore, ¢; is a
sufficient statistic for the parameter u. Computing the ML estimate yeilds

pl) = 11 ——exp {50, — 0]
1 1 N—
- vl B
= (ﬂl_ﬂ)]vexp{ ;Nol(yi—2ynu+u2)}
1 1N 1
2
1

13
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the following.

fugr, = argmaxlogp(y|u)

— argmgx{—];[(tl/N—u)Q}
~ wgmin(t/N — )
N

A.2 Example 1.4.2 Derivation

Let {Y,})= be ii.d. random variables with distribution N (s, o?). Define
the following statistics corresponding to the sample mean and variance of the
random variables.

N-1
tl — Zyn

n=0

N-1 )
to = Zyn

o

n=

Then we may write the density function for Y in the following form.

pluo®) = T0 \/% =P {_222% - u)z}

1 N-L ,
- N eXP 4y — 72(3/71 - M)
( 27‘(‘02) n=0 2
1 1 N-1
= N €XD {—22 (v — 2ynp + MQ)}
< 2702) 77 n=0
1 0 N
= NeXp{_22+2 pt1— 2'“}
(Var) 2 202" " 2
1 7 N 5, N 9
= exp —ﬁtz + 22022?1 52H T log(2mo )}
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Using the following definitions

02’ 9202
T(y) = 2
y) = t
N 5 N 9
= 2 log(2
€0) = o gp* — 5 log(270)

s(y) = 0

we can see that p(y|u, 02) has the form of equation (1.4) with suffient statistic
T(y). With some calculations it may be easily shown that the ML estimates
of ;1 and o? are given by

A.3 Example 1.4.3 Derivation
A.4 Example 1.4.4 Derivation

A.5 Example 1.4.5 Derivation

Example 3: Let {X,})- be i.i.d. random variables with P{X, = 0} =
m and P{X, = 1} = m = 1 —m. Let {¥;,}7 be conditionally i.i.d
random variables given X, and let the conditional distribution of Y,, given
X, be Gaussian N(uy,,0%,) where pg, p1, 0o, and oy are parameters of the
distribution. Then the complete set of parameters for the density of (Y, X)
are given by

0= [MO;M1;0'070177TO] .

Define the statistics
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N—-1
tl,k = Z yné(xn - k)
n=0
N-1
tor = ZO Ynd(zy — k)
n=

where k € {0,1} and J(-) is a Kroniker delta function. We know that if both
Y and X are known then the ML estimates are given by

. 11k

= F Al
fu N, (A.1)

t t1 1\ 2

A9 2,k 1,k

— 2k (XL A2
A (N,) (A.2)
) N
7Tk_ pr— ]\;: . (A-S)

We can express the density function for p(y|x,€) by starting with the
expressions derived in example 2 for each of the two classes corresponding to
X,=0and X, = 1.

. ]
plylz.0) = kgoexp{ fjg—;‘i] [2:’;] - 2]\;%#% _ ]g’nog@m,g)}
1 I 21 | tik
= kli[()exp _/:é’_;‘%’_;ai%] %}1: —]\2[]{10%(2%01%)
= ﬁ exp _% b —'LL—% — 110g(27r02)_ ?Jﬁ
E—0 U,%’ 20,%’ 20% 2 & ] ]3[’:
= exp 21: _@ b —'LL%—llog(27m2)_ ?Jg
=0 _0,%’ 20,%’ 20]% 2 K ] ]3/,:

The distribution for X also has exponential form with

p(af‘@) = Ty T

1
= eXp{Z Nklogwk}

k=0
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This yields the joint density for (Y, X)) with the following form.

p(y,z10) = p(ylr,0)p(x|0)

t

1 2 1k
Hok: 1 pe 1 2

- SR S R T e(2 1 /

Ny,



