
Chapter 1

Discrete Valued Markov Random

Fields

A serious disadvantage of Markov chain structures is that they lead to image
models that are not isotropic. This is due to the fact that one must choose a
1-D ordering of the pixels. In fact for most applications, there is no natural
1-D ordering for the pixels in a plane.

Markov random fields (MRF) have been introduced as a class of image
models that do not require a 1-D ordering of the image pixels, and therefore
can produce more natural and isotropic image models. However, as we will
see the disadvantage of MRF models is that problems such as parameter
estimation can be much more difficult due to the intractable nature of the
required normalizing constant. The key theorem required to work around
this limitation is the Hammersley-Clifford Theorem which will be presented
in detail. The following sections explain the theory and methods associated
with discrete valued MRFs.

1.1 Definition of MRF and Gibbs Distributions

Before we can define an MRF, we must first define the concept of a neigh-
borhood system. Let S be a set of lattice points with elements s ∈ S. Then
we use the notation ∂s to denote the neighbors of s. Notice that ∂s is a
subset of S, so the function ∂ is a mapping from S to the power set of S, or
equivalently the set of all subsets of S denoted by 2S.

However, not any mapping ∂s qualifies as a neighborhood system. In order
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Figure 1.1: An eight point a) neighborhood system, and b) its associated cliques.

for ∂s to be a neighborhood system, it must meet the following symmetry
constraint.

Definition 1 Neighborhood system
Let S be a set of lattice of points, then any mapping ∂ : S → 2S is a neigh-
borhood system if for all s, r ∈ S

r ∈ ∂s ⇒ s ∈ ∂r and s 6∈ ∂s

In other words, if r is a neighbor of s, then s must be a neighbor of r;
and it addition, s may not be a neighbor of itself. Notice that this definition
is not restricted to a regular lattice. However, if the lattice S is a regular
lattice, and the neighborhood is spatially invariant, then symmetry constraint
necessitates that the neighbors of a point must be symmetrically distributed
about each pixel. Figure 1.1a) shows such a symmetric 8-point neighborhood.

We may now give a general definition for MRFs.

Definition 2 Discrete(Continuous) Markov Random Field
Let Xs ∈ Ω be a discrete(continuous) valued random field defined on the lattice
S with neighborhood system ∂s. Further assume that the X has probability
mass(density) function p(x). Then we say that X is a Markov random field
(MRF) if its density function has the property that for all x ∈ Ω

p(xs|xr for r 6= s) = p(xs|x∂r) .

Notice that each pixel is only dependent on its neighbors.
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A limitation of MRFs is that their definition does not yield a natural
method for writing down the MRF’s distribution. For this purpose, we will
need to introduce the Gibbs distribution. We start by defining the concept of
cliques which will be an integral part of the structure of Gibbs distributions.

Definition 3 Clique
Given a lattice S and neighborhood system ∂s, a clique is any set of lattice
points c ⊂ S such at for all s, r ∈ c, r ∈ ∂s.

Cliques are sets of point which are all neighbors of one another. Examples of
cliques for an eight point neighborhood system on a rectangular are illustrated
in Figure 1.1b) With this definition of cliques, we may now define the concept
of a Gibbs distribution.

Definition 4 Discrete (Continuous) Gibbs Distribution
Let p(x) be the probability mass(density) function of a discrete(continuous)
valued random field Xs ∈ Ω defined on the lattice S with neighborhood system
∂s. Then we say that p(x) is a Gibbs distribution if it can be written in the
form

p(x) =
1

Z
exp







−
∑

c∈C

Vc(xc)







where Z is a normalizing constant known as the partition function, C is
the set of all cliques, xc is the vector containing values of x on the set c, and
Vc(xc) is any functions of xc.

We sometimes refer to the function Vc(xc) as a potential function and the
function

U(x) =
∑

c∈C

Vc(xc)

as the energy function.

The important result that relates MRFs and Gibbs distributions is the
Hammersley-Clifford Theorem[1] stated below.

Theorem 1 Hammersley-Clifford Theorem
Let S be an N point lattice with neighborhood system ∂s, and X be a dis-
crete(continuously) valued MRF on S with strictly positive probability mass(density)
function p(x) > 0. Then X is an MRF if and only if p(x) is a Gibbs distri-
bution.
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1.2 1-D MRFs and Markov Chains

1.3 The Ising Model and

1.4 Simulation

1.4.1 Stationary Distributions of Markov Chains

In this section, we present the basic results of Markov chain theory that we
will need to analyze simulation methods [3]. The fundamental concept is
that a well behaved Markov chain will eventually reach a stable stationary
distribution after the transient behavior dies away. The objective will be to
define the technical conditions that ensure that this happens.

Let {Xn}
∞
n=0 be a discrete valued and discrete state homogeneous Markov

chain taking values in the set Ω. Define the notation

π
(n)
j

4
= P{Xn = j}

Pi,j
4
= P{Xn = j|Xn−1 = i} ,

and define π(n) to be the corresponding 1 × |Ω| row vector, and P to be the
corresponding |Ω| × |Ω| matrix. A fundamental property of Markov chains is
that the marginal probability density for time n + 1 can be expressed as

π
(n+1)
j =

∑

i∈Ω

π
(n)
i Pi,j . (1.1)

In matrix notation, this is equivalent to

π(n+1) = π(n)P . (1.2)

Repeated application of (1.2) results in the equation

π(n+m) = π(n)Pm , (1.3)

or equivalently
π

(n+m)
j =

∑

i∈Ω

π
(n)
i Pm

i,j . (1.4)

where Pm
i,j is defined by the recursion

Pm+1
i,j =

∑

k∈Ω

Pm
i,kPk,j .



EE641 Digital Image Processing II: Purdue University VISE - October 23, 2006 5

More generally, the Chapman-Kolmogorov relation states that

Pm+k
i,j =

∑

k∈Ω

Pm
i,kP

k
k,j .

We next define a number of properties for homogeneous Markov chains
that we will need.

Definition 5 Communicating states
The states i, j ∈ Ω of a Markov chain are said to communicate if there exists
integers n > 0 and m > 0 such that P n

i,j > 0 and Pm
j,i > 0.

Intuitively, two states communicate if it is possible to transition between the
two states. It is easily shown that communication is an equivalence property,
so it partitions the set of states into disjoint sets that all communicate with
each other. This leads to a natural definition for irreducible Markov chains.

Definition 6 Irreducible Markov Chain
A discrete time discrete state homogeneous Markov chain is said to be irre-
ducible if for all i, j ∈ Ω i and j communicate.

So a Markov chain is irreducible if it is possible to change from any initial
state to any other state in finite time.

In some cases, a state of a Markov chain my repeat periodically. This type
of periodic repetition can last indefinitely.

Definition 7 Periodic state
We denote the period of a state i ∈ Ω by the value d(i) where d(i) is the
largest integer so that P n

i,i = 0 whenever n is not divisible by d(i). If d(i) > 1,
then we say that the state i is periodic.

It can be shown that states of a Markov chain that communicate must have
the same period. Therefore, all the states of an irreducible Markov chain
must have the same period. We say that the an irreducible Markov chain is
aperiodic if all the states have period 1.

Using these definitions, we may now state a theorem which gives basic
conditions for convergence of the distribution of the Markov chain.

Theorem 2 Limit Theorem for Markov Chains
Let Xn ∈ Ω be a discrete-state discrete-time homogeneous Markov chain with
transition probabilities Pi,j and the following additional properties
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• Ω is a finite set

• The Markov chain is irreducible

• The Markov chain is aperiodic

There exists a unique stationary distribution π, which for all states i is given
by

πj = lim
n→∞

P n
i,j > 0 (1.5)

and which is the unique solution to the following set of equations.

1 =
∑

i∈Ω

πi (1.6)

πj =
∑

i∈Ω

πiPi,j . (1.7)

The relations of (1.7) are sometimes called the full balance equations (FBE).
Any probability density which solves the FBE is guaranteed to be the station-
ary distribution of the Markov chain. Furthermore, in the limit as n → ∞,
the Markov chain is guaranteed to converged to this stationary distribution
independently of the initial state. Markov chains that have this property of
(1.5) are said to be ergodic. It can be shown that for ergodic Markov chains,
expectations of state variables can be replace by time averages, which will be
very useful in later sections.

Theorem 2 gives relatively simple conditions to establish that a Markov
chain has a stationary distribution. However, while it may be known that a
stationary distribution exists, it may be very difficult to compute the solution
of the FBEs to determine the precise form of that distribution. It is often
useful to use the property of reversibility as a method to solve this problem.
First we must show that the time reverse of a Markov chain is itself a Markov
chain.

Proposition 1 Time Reverse of Markov Chains
Let {Xn}

∞
n=−∞ be a Markov Chain. Then the time reversed process Yn = X−n

is also a Markov chain.

Since the time reversal of a Markov chain is also a Markov chain, it must also
have a transition distribution which we denote at Qi,j. Therefore, we know
that

P{Xn = i, Xn+1 = j} = πn
i Pi,j = πn+1

j Qj,i .
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If the Markov chain has a stationary distribution, then π = πn = πn+1, and
we have that

πiPi,j = πjQj,i .

Furthermore, if the Markov chain is reversible, then we know that Pi,j = Qi,j.
This yields the so-called detailed balance equations (DBE).

πiPi,j = πjPj,i (1.8)

The DBE specify that the rate of transitions from state i to state j equals the
rate of transitions from state j to i. This is always the case when a Markov
chain is reversible.

Definition 8 Reversible Markov Chain
A homogeneous Markov chain with transition probabilities Pi,j is said to be
reversible if there exists a stationary distribution which solves the detailed
balance equations of (1.8).

Notice that if one finds a solution to the DBE, then this solution must also
be a solution to the FBE, and is therefore the stationary distribution of an
ergodic Markov chain. To see this

∑

i∈Ω

πiPi,j =
∑

i∈Ω

πjPj,i

= πj

∑

i∈Ω

Pj,i

= πj

Finally, it is useful to study the convergence behavior of Markov chains.
Let us consider the case when the Markov chains state Ω is finite. In this
case, we may use a matrix representation for P . We know that any matrix
P may be diagonalized using eigen decomposition and expressed in the form

P = E−1ΛE

where the rows of E are the left hand eigenvectors of P , and Λ is a diagonal
matrix of eigenvalues. Using this decomposition, we can see that

Pm = Pm−2 E−1ΛE−1 EΛE

= Pm−2 E−1Λ2E

= E−1ΛmE
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So the distribution at time n is given by

π(n) = π(0)E−1ΛmE

When P corresponds to a irreducible and aperiodic Markov chain, then it
must have a stationary distribution. In this case, exactly one of the eigenval-
ues is 1, and the remaining eigenvalues have magnitude strictly less then 1.
In this way, we can see that the distribution of π(n) converges geometrically
to its stationary distribution π.

1.4.2 The Gibbs Sampler

In this section, we introduce the Gibbs sampler first presented in [2]. The
Gibbs sample is a general method for producing samples from a distribu-
tion. It is particularly useful when the distribution being sampled is a Gibbs
distribution, and the resulting samples form a Markov random field.

Let Xs be a finite dimensional random field that takes on values in a
discrete and finite set Ω for all s ∈ S. If we assume that that the distribution
of X is strictly positive, then without loss of generality, we know that the
distribution of X can be written in the form

p(x) =
1

z
exp{−u(x)} (1.9)

where u(x) is a real valued function. In fact, it is always possible to choose
the neighbors of each pixel so that ∂s = S. In this case, the entire lattice S

forms a clique, (1.9) is then a Gibbs distribution, and X is an MRF with a
degenerate neighborhood system. In any case, the marginal distribution of a
pixel can be written as

p (xs|xi i 6= s) =
exp{−u (xs|xi i 6= s)}

∑

x′

s
∈Ω

exp{−u (x′
s|xi i 6= s)}

(1.10)

We can generate samples from the distribution of (1.9) by using the following
Gibbs sampler algorithm.
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Gibbs Sampler Algorithm:

1. Set N = # of pixels

2. Order the N pixels as N = s(0), · · · , s(N − 1)

3. Repeat for k = 0 to ∞

(a) Form X (k+1) from X(k) via

X(k+1)
r =







W if r = s(k)

X(k)
r if r 6= s(k)

where W ∼ p
(

xs(k)

∣

∣

∣

∣

X
(k)
i i 6= s(k)

)

We next show that the Gibbs sampler converges to the distribution of
(1.9).

Theorem 3 Stationary Distribution of Gibbs Sampler
Let p(x) be strictly positive distribution on ΩN where Ω is a discrete and finite
set. Then the Gibbs Sampler Algorithm converges to a stationary distribution
with

p(x) = lim
k→∞

P{X(k) = x} .

Let X have a strictly positive distribution

Notice that in the special case that Pi,j > 0 for all i, j ∈ Ω, then the
Markov chain is guaranteed to be both irreducible and aperiodic. This leads
to the following useful corollary.

Theorem 4 Limit Theorem 1 for Markov Chains Let Xn be a discrete-state
discrete-time homogeneous Markov chain such that

• Ω is a finite set

• Pi,j > 0 for all i, j ∈ Ω

Then exists a unique stationary distribution
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