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Simulation

e Topics to be covered:

— Gibbs sampler
— Metropolis sampler

— Hastings-Metropolis sampler
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Generating Samples from a Gibbs Distribution

e How do we generate a random variable X with a Gibbs distribution?

1

p(z) = exp {~U(z)}

e Generally, this problem is difficult.
e Markov Chains can be generated sequentially

e Non-causal structure of MRF’s makes simulation difficult.
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Gibbs Sampler|4]

e Replace each point with a sample from its conditional distribution
plas|zi i # s) = p(as|zos)

e Scan through all the points in the image.

e Advantage
— Eliminates need for rejections = faster convergence
e Disadvantage

— Generating samples from p(xs|xss) can be difficult.
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Gibbs Sampler Algorithm

Gibbs Sampler Algorithm:
1. Set N = # of pixels
2. Order the N pixels as N = s(0),---,s(N — 1)
3. Repeat for k =0 to oo
(a) Form X*+D from X% via

W ifr =s(k)
(k+1) _
X { X if r £ s(k)

r

where W ~ p (SCs(k) .Xg;zk)>
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The Metropolis Sampler[9, 8]

e How do we generate a sample from a Gibbs distribution?

1

pla) = exp {~U(2)}

e Start with the sample 2¥, and generate a new sample W with probability
q(wlz").
Note: g(w|z") must be symmetric.
q(wlz") = g(a*|w)
e Compute AE(W) = U(W) — U(z"), then do the following:
If AE(W) < 0
— Accept: Xt =W
It AE(W) >0
— Accept: X* = W with probability exp{—AE(W)}
— Reject: X*! = 2F with probability 1 — exp{—AE (W)}
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Ergodic Behavior of Metropolis Sampler

e The sequence of random fields, X*, form a Markov chain.

o Let p(z1|2*) be the transition probabilities of the Markov chain.

e Then X¥ is reversible
p(z* ") exp{—U(a")} = exp{-U(z""")}p(z"|z"*")

e Therefore, if the Markov chain is irreducible, then

lim P{X* = o} = ;exp{—U(m)}

o If every state can be reached, then as & — oo, X* will be a sample from
the Gibbs distribution.
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Example Metropolis Sampler for Ising Model

0
1(X|0
0

e Assume z¥ = 0.

e Generate a binary R.V., W such that P{W =0} = 0.5.
AE(W) = UW) = Ul(a")

S

0 W =0
28 if W =1
It AE(W) < 0
— Accept X! =W
It AE(W) >0

— Accept: XFT1 = W with probability exp{—AE(W)}
— Reject: XFH = 2% with probability 1 — exp{—AE (W)}

e Repeat this procedure for each pixel.

e Warning: for 8 > (3. convergence can be extremely slow!
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Example Simulation for Ising Model(3 = 1.0)

e Jest 1

e Test 2

e [est 3

e Test 4

Uniform Random 10 Iterations 50 Iterations 100 Iterations
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Advantages and Disadvantages of Metropolis
Sampler

e Advantages

— Can be implemented whenever AFE is easy to compute.
— Has guaranteed geometric convergence.

e Disadvantages
— Can be slow if there are many rejections.

— Is constrained to use a symmetric transition function g(z**1|z%).
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Hastings-Metropolis Sampler|7, 10]

e Hastings and Peskun generalized the Metropolis sampler for transition func-
tions g(w|z*) which are not symmetric.

e The acceptance probability is then

q(z"|w)

q(wlz®)

az" w) = min {1,

exp{—AF(w)}

e Special cases
q(w|z*) = q(2*|z) = conventional Metropolis
q(ws|x¥) = p(az?|x§s)‘x,§:ws = Gibbs sampler
e Advantage

— Transition function may be chosen to minimize rejections|6]
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Parameter Estimation for Discrete State MRF’s

e Topics to be covered:
— Why is it difficult?
— Coding/maximum pseudolikehood

— Least squares

11
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Why is Parameter Estimation Difficult?

e Consider the ML estimate of § for an Ising model.

e Remember that
t1(x) = (# horz. and vert. neighbors of different value.)

e Then the ML estimate of 3 is

75 “0 =B (@)

= argmax {—0t1(z) —log Z ()}

B = arg mgx

e However, log Z(3) has an intractable form
log Z(8) = log > exp {—Bt1(z)}

e Partition function can not be computed.
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Coding Method /Maximum Pseudolikelihood|1, 2]

oV evVevVew
~ 4pt A B AR AR AR
Neighborhood e T 06T 6T 0 T ® Codel
A B AR AR AR v Code 2
o vVevevew A Code 3
A N A B AR AR
m Code 4
o VevVevVewv

A B A B A AR

e Assume a 4 point neighborhood
e Separate points into four groups or codes.

e Group (code) contains points which are conditionally independent given the
other groups (codes).

B:argmﬁax I plxs|Tss)

seCodey,

e This is tractable (but not necessarily easy) to compute
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Least Squares Parameter Estimation|3]

e [t can be shown that for an Ising model
P{XS — 1|:Ijas}
P{X, =0|zrss}

log = = (Vi(l|zas) — Vi(0]zps))
e For each unique set of neighboring pixel values, x5, we may compute

P{X,=1|zp,)
PIX,=0]p,}

— The value of (V1(1]zgs) — Vi(0]zss))

— This produces a set of over-determined linear equations which can be
solved for 3.

— The observed rate of log

e This least squares method is easily implemented.
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Theoretical Results in Parameter Estimation for
MRF’s

e Inconsistency of ML estimate for Ising model[11, 12]

— Caused by critical temperature behavior.

— Single sample of Ising model cannot distinguish between high (G with
mean 1/2, and low § with large mean.

— Not identifiable
e Consistency of maximum pseudolikelihood estimate[5]

— Requires an identifiable parameterization.
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