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Simulation

• Topics to be covered:

– Gibbs sampler

– Metropolis sampler

– Hastings-Metropolis sampler
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Generating Samples from a Gibbs Distribution

• How do we generate a random variable X with a Gibbs distribution?

p(x) =
1

Z
exp {−U(x)}

• Generally, this problem is difficult.

• Markov Chains can be generated sequentially

• Non-causal structure of MRF’s makes simulation difficult.
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Gibbs Sampler[4]

• Replace each point with a sample from its conditional distribution

p(xs|x
k
i i 6= s) = p(xs|x∂s)

• Scan through all the points in the image.

• Advantage

– Eliminates need for rejections ⇒ faster convergence

• Disadvantage

– Generating samples from p(xs|x∂s) can be difficult.
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Gibbs Sampler Algorithm

Gibbs Sampler Algorithm:

1. Set N = # of pixels

2. Order the N pixels as N = s(0), · · · , s(N − 1)

3. Repeat for k = 0 to ∞

(a) Form X (k+1) from X (k) via

X (k+1)
r =















W if r = s(k)
X (k)

r if r 6= s(k)

where W ∼ p
(

xs(k)

∣

∣

∣

∣

∣

X
(k)
∂s(k)

)
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The Metropolis Sampler[9, 8]

• How do we generate a sample from a Gibbs distribution?

p(x) =
1

Z
exp {−U(x)}

• Start with the sample xk, and generate a new sample W with probability
q(w|xk).

Note: q(w|xk) must be symmetric.

q(w|xk) = q(xk|w)

• Compute ∆E(W ) = U(W ) − U(xk), then do the following:

If ∆E(W ) < 0

– Accept: Xk+1 = W

If ∆E(W ) ≥ 0

– Accept: Xk+1 = W with probability exp{−∆E(W )}

– Reject: Xk+1 = xk with probability 1 − exp{−∆E(W )}
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Ergodic Behavior of Metropolis Sampler

• The sequence of random fields, Xk, form a Markov chain.

• Let p(xk+1|xk) be the transition probabilities of the Markov chain.

• Then Xk is reversible

p(xk+1|xk) exp{−U(xk)} = exp{−U(xk+1)}p(xk|xk+1)

• Therefore, if the Markov chain is irreducible, then

lim
k→∞

P{Xk = x} =
1

Z
exp{−U(x)}

• If every state can be reached, then as k → ∞, Xk will be a sample from
the Gibbs distribution.
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Example Metropolis Sampler for Ising Model

xs

0

1

0

0

• Assume xk
s = 0.

• Generate a binary R.V., W , such that P{W = 0} = 0.5.

∆E(W ) = U(W ) − U(xk
s)

=















0 if W = 0
2β if W = 1

If ∆E(W ) < 0

– Accept Xk+1
s = W

If ∆E(W ) ≥ 0

– Accept: Xk+1
s = W with probability exp{−∆E(W )}

– Reject: Xk+1
s = xk

s with probability 1 − exp{−∆E(W )}

• Repeat this procedure for each pixel.

• Warning: for β > βc convergence can be extremely slow!
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Example Simulation for Ising Model(β = 1.0)

• Test 1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Ising model: Beta = 1.000000, Iteration = 10

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Ising model: Beta = 1.000000, Iteration = 50

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Ising model: Beta = 1.000000, Iteration = 100

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

• Test 2
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• Test 3
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• Test 4
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Advantages and Disadvantages of Metropolis
Sampler

• Advantages

– Can be implemented whenever ∆E is easy to compute.

– Has guaranteed geometric convergence.

• Disadvantages

– Can be slow if there are many rejections.

– Is constrained to use a symmetric transition function q(xk+1|xk).



EE641 Digital Image Processing II: Purdue University VISE - October 23, 2006 10

Hastings-Metropolis Sampler[7, 10]

• Hastings and Peskun generalized the Metropolis sampler for transition func-
tions q(w|xk) which are not symmetric.

• The acceptance probability is then

α(xk
s, w) = min















1,
q(xk|w)

q(w|xk)
exp{−∆E(w)}















• Special cases

q(w|xk) = q(xk|z) ⇒ conventional Metropolis

q(ws|x
k) = p(xk

s|x
k
∂s)

∣

∣

∣

∣

xk
s=ws

⇒ Gibbs sampler

• Advantage

– Transition function may be chosen to minimize rejections[6]
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Parameter Estimation for Discrete State MRF’s

• Topics to be covered:

– Why is it difficult?

– Coding/maximum pseudolikehood

– Least squares
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Why is Parameter Estimation Difficult?

• Consider the ML estimate of β for an Ising model.

• Remember that

t1(x) = (# horz. and vert. neighbors of different value.)

• Then the ML estimate of β is

β̂ = arg max
β















1

Z(β)
exp {−βt1(x)}















= arg max
β

{−βt1(x) − log Z(β)}

• However, log Z(β) has an intractable form

log Z(β) = log
∑

x
exp {−βt1(x)}

• Partition function can not be computed.
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Coding Method/Maximum Pseudolikelihood[1, 2]

4 pt
Neighborhood Code 1

Code 2

Code 3

Code 4

• Assume a 4 point neighborhood

• Separate points into four groups or codes.

• Group (code) contains points which are conditionally independent given the
other groups (codes).

β̂ = arg max
β

∏

s∈Codek

p(xs|x∂s)

• This is tractable (but not necessarily easy) to compute
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Least Squares Parameter Estimation[3]

• It can be shown that for an Ising model

log
P{Xs = 1|x∂s}

P{Xs = 0|x∂s}
= −β (V1(1|x∂s) − V1(0|x∂s))

• For each unique set of neighboring pixel values, x∂s, we may compute

– The observed rate of log P{Xs=1|x∂s}
P{Xs=0|x∂s}

– The value of (V1(1|x∂s) − V1(0|x∂s))

– This produces a set of over-determined linear equations which can be
solved for β.

• This least squares method is easily implemented.
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Theoretical Results in Parameter Estimation for
MRF’s

• Inconsistency of ML estimate for Ising model[11, 12]

– Caused by critical temperature behavior.

– Single sample of Ising model cannot distinguish between high β with
mean 1/2, and low β with large mean.

– Not identifiable

• Consistency of maximum pseudolikelihood estimate[5]

– Requires an identifiable parameterization.
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