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Markov Random Fields

e Noncausal model
e Advantages of MRF’s

— Isotropic behavior

— Only local dependencies
e Disadvantages of MRF's
— Computing probability is difficult

— Parameter estimation is difficult

e Key theoretical result: Hammersley-Clifford theorem
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Definition of Neighborhood System

e Define

S - set of lattice points
s - a lattice point, s € S
X, - the value of X at s
0s C S - the neighboring points of s

e A neighborhood system ds must be symmetric
r€ds=s€0r alsos ¢ 0s

e Example of 8 point neighborhood

X(0.0) | X0.1) | X(0.2) | X(0,3) | X(0.4)

X0 | Xa | Xa2 | X@s) | K@

X(2,0) X(2,1) X(z,z) X(2'3) X(2’4) Neighbors of X(z,z)

X30 | X@ | X62) | X@3) | X6

X@0) | XK@ | X@2) | X@3) | X9
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Markov Random Field

e Definition: A random object X on the lattice .S with neighborhood system
0s is said to be a Markov random field if for all s € S

p(xs|z, for r # s) = p(x|zos)

e Problem: How do we write down the distribution for an MRF?

Unfortunately
p(z) # 1 plws|z, forr# s)
sE
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Definition of Clique

e A clique is a set of points, ¢, which are all neighbors of each other

Vs, r €c,r € 0s

e 8 point neighborhood system

X00) | X01)| X02) | X03) | X4

Xwo | Xay | Xa2) | Xas) | Xws

X0 | Xe1) | X22) | X@3) | X2.4 Neighbors of X, 5

X0 | X@y | Xe2) | Xe3) | Xea

X@0) | X1 | X@2)| X@3) | Xas

e Eixample of cliques for 8 point neighborhood

1-point clique D

2-point cliques [ [ | E DD [j

3-point cliques ‘ ’ ’ H ‘

4-point cliques

Not a clique
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Gibbs Distribution

x. - The value of X at the points in clique c.

Vi(x.) - A potential function is any function of z..

e A (discrete) density is a Gibbs distribution if
1

plo) = exp = 5 Vilao)|

C is the set of all cliques

Z 1s the normalizing constant for the density.

e / is known as the partition function.

o U(x)= cgc V.(x.) is known as the energy function.
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Hammersley-Clifford Theorem|1]

X is a Markov random field
& <—
Ve, P{X =z}>0

P{X =z} has the form
of a Gibbs distribution

e Gives you a method for writing the density for a MRF
e Does not give the value of Z, the partition function.

e Positivity, P{X = x} > 0, is a technical condition which we will generally
assume.
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Markov Chains are MRF’s

~_

Neighbors of X,

e Neighbors of n are On = {n —1,n + 1}
e Cliques have the form ¢ = {n — 1,n}

e Density has the form

p(a) = plao) T plaafz,-1)

N
— plao)exp | £ logplanen-)|

n=

e The potential functions have the form

V(n, n-1) = —log p(xs|zn-1)
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1-D MRF’s are Markov Chains

o Let X, be a1-D MRF with on ={n—1,n+ 1}
e The discrete density has the form of a Gibbs distribution

p(x) = p(xo) exp {— 7%1 V(xn, $n—1)}

e [t may be shown that this is a Markov Chain.

e Transition probabilities may be difficult to compute.
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The Ising Model

e First proposed to model 2-D magnetic structures.
e See the work of Peierls for an early treatment|7, 6].

e Kindermann and Snell have a very clear tutorial treatment in [4].

e Lattice geometry

— S is a rectangular lattice of NV pixels.
— 4-point neighborhood system with cliques ¢ € C.

— Assume circular boundary conditions for now.
e Lattice energy

— Each pixel X, € {—1,41} corresponding to north and south poles.
— Potential of clique {r,s} € Cis —5.X, X,.
— Total energy is

= —— X, Xg .
u<x> 2 {7“,82}266
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Physical Basis of Gibbs Distribution

e What is the equilibrium distribution p.(z)?

e Fxpected energy is
g{pe} — %Z%(x) u<x)

e [ntropy is
H{pe} — % —pe($) 1nge($)
e First Law of Thermodynamics: Expected energy must be constant.

e Second Law of Thermodynamics: Entropy must be maximized.

e — H e
p <$> s pe:é'{prgi}éOHSt {p }

e Solution is the Gibbs distribution!

o) = exp |~ ula)]

—T" 1s tempurature

— k 1s Boltzmann’s constant
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Distribution for Ising Model

e Fqualibrium distribution for Ising model is

p(x)

1
—exp
Z
1
—exp
Z
1
? eXp

J 3 X?“Xs}

2kT {r,s}eC

J 1

Ea L5(X, £ X, )
kT {T,%EC (2 < 7& ) }
— > 0(X, #£ X,
(7 5005 50)

where 8 = ;7 is a model parameter and (X, # X,) is an indicator function

for the event X, # Xj.

e By the Hammersly-Clifford Theorem, X is a MRF with a 4-point neighbor-

hood.
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Interpretation of Ising Model

Cliques: | X;|Xq X,
XS

Boundary:

+ |+ |+ [+ [+ ]|+]

e Potential functions are given by
V(QET, xs) — 65@77“ 7& 333)
e Energy function is given by

ZC Vi.(z.) = f(Boundary length)
ce

e Interpretation of probability density

1
p(x) = —exp{—/F(Boundary length)}
2

e Longer boundaries = less probable
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Conditional Probability of a Pixel in Ising Model

Cliques Containing Xj

Neighbors Xj X1
X1 Xs

X4 | Xg| X Xya| X Xs| X5
X; X,
X3

e The probability of a pixel given all other pixels is

L _
p(zvs\xz-#s) — leefp { 2eeC %(l’c)}
Sr=0 7 eXP { — Zeec Ve(Te) }

e Notice: Any term V,(x.) which does not include z, cancels.

| B eXp{—ﬁZ?zl 5<375 7é x@)}
P(@s|Tiss) = s Lexp {(—B52, 6(z, # 2:)}
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Conditional Probability of a Pixel in Ising Model
(Continued)

Neighbors X,

1 V (0,X3) = 1
O XS O V(l’xas) — 3

0

e Define
v(xs, Ox) 2 4 of horzontal /vertical neighbors # x4
e Then
exp {—pv(xs, 0xs)}
p<5’78|xi#8> = — /
> exp{—fu(r, 0zs)}
rh={—-1,+1}

e When 3 > 0, X is most likely to be the majority neighboring class.
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Conditional Distribution Plots

Frobabpility that XS =1

1 ‘
— B=0.00
— B= 025
0.8 — B= 050 |
— B=0.75
— B= 1.00
> i 1
£0.6 B= 1.25
O
(4]
O
(@]
a 0.4
0.2
% 1 2 3 4

Number of neighbors not equal to 1

o P{X, = 1|X, for r # s} for different values of /3.

15
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Critical Temperature Behavior|7, 6, 4]

A
Y

+ |+ |+ |w

Center Pixel X_:

zZ
W| W | W W|w| W |w|w| w
W+ |+ [+ |+ |+ |+ |+ ]m
W| W W Ww|w| W |w|w|w

Y B|B|B|B|B

° é is analogous to temperature.

e Peierls showed that for G > (.
lim P(X,=0/B=0)# Nlim P(Xy=0B=1)

N—o0
e The effect of the boundary does not diminish as N — oo!
e 3.~ .88 is known as the critical temperature.

e Very nice proof of critical temperature in [4].

16
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Critical Temperature Analysis[5]
e Amazingly, Onsager was able to compute the following result as N — oc.

NS
EXo|B = 1] = | (1= @) 18> 5
0 it § <5

15

o

0.5r

Mean Field Value

_05 Il Il Il Il Il Il Il Il Il
0 0.5 1 1.5 2 25 3 35 4 4.5 5
Inverse Temperature

e Onsager also computed an analytic expression for Z(T')!
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M-Level MRF 2]
E

x| x|
ENRRIN

Cliques:

O|O|O0O(0O[O0O|O0O|O|O
O|OoO|O(O(O|O]N]O
O |OIN[(N]JO OO |O
OIN N[N |P]O|O
OO |IN]F |kP]O|O
O |k, (kP[P |F|FL]O
OO0 (O[O | ]O
OO0 |0 |O

Neighbors: Xs

e Define C; 2 ( hor. /vert. cliques) and Co 2 ( diag. cliques)

e Then
Vi ) = B10(x, # x4) for {x,, x5} € C
o bs) =N Bys(ay # w,) for {z,,2:} € C,

e Define

1>

> O(x, # xg
{s,r}eCy ( )

> oz, # s
{s,r}eCs ( ?é )

1>

e Then the probability is given by

1

pla) = exp{—(Bita(x) + Bl }

18
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Conditional Probability of a Pixel

Cliques Containing Xq

Neighbors Xq Xs Xq Xg
X5| X1 Xg Xs) [ Xs] | Xs
Xa| Xs| Xo Xa| Xs Xs| Xo
X8 X3 X7 Xs Xs Xs

Xg X3 X5

e The probability of a pixel given all other pixels is

L _
p(xs\aj#s) — Mglei{p { 2eeC ‘/C(CL'C)}
Sr=0 7 eXP { — Zeec Ve(xe) }

e Notice: Any term V,(z.) which does not include z, cancels.

exp {—ﬁ1 £i 1 0(xs # xi) — Bo=b_s 0(ws # 372)}

Lg|Lits) = —

19



EE641 Digital Image Processing 1I: Purdue University VISE - October 23, 2006 20

Conditional Probability of a Pixel (Continued)

Neighbors X

11110 V1(0,x39 =2 V5(0,%9) = 1
11X 0 Vi(1X39 =2 Vo(l,%9) =3

ololo
e Define
v (s, 0T ) 2 4 of horz. /vert. neighbors # x
v9(xs, Ox) = # of diag. neighbors # x
e Then
p<x3|xi;&s> = leexp {—51711(3357 &Us) — Bova(zs, 3335)}

where Z’ is an easily computed normalizing constant

e When 31, 3 > 0, X, is most likely to be the majority neighboring class.
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Line Process MRF [3]

Pixels Clique Potentials

B1=0

MRF
eloeieolole@ =27
ciecicieie
“““ B3=1.8

“““ 34=0.9

p

Line sites

™
[
1
[ueY
[ee]

™

o
il
N
~

e Line sites fall between pixels
e The values (31, - - -, o determine the potential of line sites

e The potential of pixel values is
(s —x,)? ifls=0

Viws, @ lrs) = 4 if 1, =1

e The field is

— Smooth between line sites

— Discontinuous at line sites
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