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Markov Random Fields

• Noncausal model

• Advantages of MRF’s

– Isotropic behavior

– Only local dependencies

• Disadvantages of MRF’s

– Computing probability is difficult

– Parameter estimation is difficult

• Key theoretical result: Hammersley-Clifford theorem
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Definition of Neighborhood System

• Define

S - set of lattice points

s - a lattice point, s ∈ S

Xs - the value of X at s

∂s ⊂ S - the neighboring points of s

• A neighborhood system ∂s must be symmetric

r ∈ ∂s ⇒ s ∈ ∂r also s 6∈ ∂s

• Example of 8 point neighborhood

X(1,4)X(1,3)X(1,2)X(1,1)X(1,0)

X(2,4)X(2,3)X(2,2)X(2,1)X(2,0)

X(3,4)X(3,3)X(3,2)X(3,1)X(3,0)

X(0,4)X(0,3)X(0,2)X(0,1)X(0,0)

X(4,4)X(4,3)X(4,2)X(4,1)X(4,0)

Neighbors of X(2,2)
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Markov Random Field

• Definition: A random object X on the lattice S with neighborhood system
∂s is said to be a Markov random field if for all s ∈ S

p(xs|xr for r 6= s) = p(xs|x∂s)

• Problem: How do we write down the distribution for an MRF?

Unfortunately
p(x) 6=

∏

s∈S
p(xs|xr for r 6= s)
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Definition of Clique

• A clique is a set of points, c, which are all neighbors of each other

∀s, r ∈ c, r ∈ ∂s

• 8 point neighborhood system

X(1,4)X(1,3)X(1,2)X(1,1)X(1,0)

X(2,4)X(2,3)X(2,2)X(2,1)X(2,0)

X(3,4)X(3,3)X(3,2)X(3,1)X(3,0)

X(0,4)X(0,3)X(0,2)X(0,1)X(0,0)

X(4,4)X(4,3)X(4,2)X(4,1)X(4,0)

Neighbors of X(2,2)

• Example of cliques for 8 point neighborhood

1-point clique

2-point cliques

3-point cliques

4-point cliques

Not a clique
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Gibbs Distribution

xc - The value of X at the points in clique c.

Vc(xc) - A potential function is any function of xc.

• A (discrete) density is a Gibbs distribution if

p(x) =
1

Z
exp











−
∑

c∈C
Vc(xc)











C is the set of all cliques

Z is the normalizing constant for the density.

• Z is known as the partition function.

• U(x) =
∑

c∈C
Vc(xc) is known as the energy function.
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Hammersley-Clifford Theorem[1]

















X is a Markov random field
&

∀x, P{X = x} > 0

















⇐⇒









P{X = x} has the form
of a Gibbs distribution









• Gives you a method for writing the density for a MRF

• Does not give the value of Z, the partition function.

• Positivity, P{X = x} > 0, is a technical condition which we will generally
assume.
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Markov Chains are MRF’s

Xn-2 Xn-1 Xn Xn+1 Xn+2

Neighbors of Xn

• Neighbors of n are ∂n = {n − 1, n + 1}

• Cliques have the form c = {n − 1, n}

• Density has the form

p(x) = p(x0)
N
∏

n=1
p(xn|xn−1)

= p(x0) exp











N
∑

n=1
log p(xn|xn−1)











• The potential functions have the form

V (xn, xn−1) = − log p(xn|xn−1)
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1-D MRF’s are Markov Chains

• Let Xn be a 1-D MRF with ∂n = {n − 1, n + 1}

• The discrete density has the form of a Gibbs distribution

p(x) = p(x0) exp











−
N
∑

n=1
V (xn, xn−1)











• It may be shown that this is a Markov Chain.

• Transition probabilities may be difficult to compute.
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The Ising Model

• First proposed to model 2-D magnetic structures.

• See the work of Peierls for an early treatment[7, 6].

• Kindermann and Snell have a very clear tutorial treatment in [4].

• Lattice geometry

– S is a rectangular lattice of N pixels.

– 4-point neighborhood system with cliques c ∈ C.

– Assume circular boundary conditions for now.

• Lattice energy

– Each pixel Xs ∈ {−1, +1} corresponding to north and south poles.

– Potential of clique {r, s} ∈ C is −J
2XrXs.

– Total energy is

u(x) = −
J

2

∑

{r,s}∈C
XrXs .
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Physical Basis of Gibbs Distribution

• What is the equilibrium distribution pe(x)?

• Expected energy is
E{pe} =

∑

x
pe(x) u(x)

• Entropy is
H{pe} =

∑

x
−pe(x) log pe(x)

• First Law of Thermodynamics: Expected energy must be constant.

• Second Law of Thermodynamics: Entropy must be maximized.

pe(x) = arg max
pe:E{pe}=const

H{pe}

• Solution is the Gibbs distribution!

p(x) =
1

z
exp











−
1

kT
u(x)











– T is tempurature

– k is Boltzmann’s constant
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Distribution for Ising Model

• Equalibrium distribution for Ising model is

p(x) =
1

z
exp















J

2kT

∑

{r,s}∈C
XrXs















=
1

z
exp















J

kT

∑

{r,s}∈C







1

2
− δ(Xr 6= Xs)





















=
1

z′
exp















−β
∑

{r,s}∈C
δ(Xr 6= Xs)















where β = J
kT is a model parameter and δ(Xr 6= Xs) is an indicator function

for the event Xr 6= Xs.

• By the Hammersly-Clifford Theorem, X is a MRF with a 4-point neighbor-
hood.
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Interpretation of Ising Model
- - - -

- - - -

- - - +

- - - +

- - - -

- + + -

+ + + -

+ - -

- - - -

- - - -

- - - -

- - - -

- + - -

+ + - -

- + - -

- - - -

+

Cliques: Xr Xs Xr

Xs

Boundary:

• Potential functions are given by

V (xr, xs) = βδ(xr 6= xs)

• Energy function is given by
∑

c∈C
Vc(xc) = β(Boundary length)

• Interpretation of probability density

p(x) =
1

z
exp{−β(Boundary length)}

• Longer boundaries ⇒ less probable
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Conditional Probability of a Pixel in Ising Model

Neighbors Xs

Xs

Cliques Containing Xs

X4 Xs

X1

Xs

X3

Xs

X2XsX4

X1

X3

X2

• The probability of a pixel given all other pixels is

p(xs|xi6=s) =
1
Z exp {− ∑

c∈C Vc(xc)}
∑M−1

xs=0
1
Z exp {− ∑

c∈C Vc(xc)}

• Notice: Any term Vc(xc) which does not include xs cancels.

p(xs|xi6=s) =
exp

{

−β ∑4
i=1 δ(xs 6= xi)

}

∑M−1
xs=0 exp {−β ∑4

i=1 δ(xs 6= xi)}
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Conditional Probability of a Pixel in Ising Model
(Continued)

Neighbors Xs

xs

1 V (0,x∂s) = 1
0

0

0 V (1,x∂s) = 3

• Define

v(xs, ∂xs)
4
= # of horzontal/vertical neighbors 6= xs

• Then

p(xs|xi 6=s) =
exp {−βv(xs, ∂xs)}

∑

x′s={−1,+1}
exp {−βv(x′

s, ∂xs)}

• When β > 0, Xs is most likely to be the majority neighboring class.
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Conditional Distribution Plots

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Probability that X
s
 = 1

Number of neighbors not equal to 1

P
ro

ba
bi

lit
y

β =  0.00
β =  0.25
β =  0.50
β =  0.75
β =  1.00
β =  1.25

• P{Xs = 1|Xr for r 6= s} for different values of β.
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Critical Temperature Behavior[7, 6, 4]

Center Pixel X- :

B B B B

B - - -

B - - +

B - - +

B B B B

- + + B

+ + + B

+ - B

B - - -

B - - -

B - - -

B B B B

- + - B

+ + - B

- + - B

B B B B

+

B - - - - + + B

B

-

-

-

-

-

-

B

-

N

N

• 1
β is analogous to temperature.

• Peierls showed that for β > βc

lim
N→∞

P (X0 = 0|B = 0) 6= lim
N→∞

P (X0 = 0|B = 1)

• The effect of the boundary does not diminish as N → ∞!

• βc ≈ .88 is known as the critical temperature.

• Very nice proof of critical temperature in [4].
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Critical Temperature Analysis[5]

• Amazingly, Onsager was able to compute the following result as N → ∞.

E[X0|B = 1] =























(

1 − 1
(sinh(β))4

)1/8
if β > βc

0 if β < βc

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

Inverse Temperature

M
ea

n 
F

ie
ld

 V
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ue

• Onsager also computed an analytic expression for Z(T )!
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M-Level MRF[2]
0 0 0 0

0 2 0 0

0 0 0 1

0 0 0 1

0 0 0 0

0 1 1 0

1 1 1 0

1 0 0

0 0 2 2

0 0 2 2

0 0 0 2

0 0 0 0

2 1 0 0

1 1 0 0

0 1 0 0

0 0 0 0

1

Cliques:

Xr Xs Xr

Xs

Xr

Xs

Xr

Xs

Neighbors: Xs

• Define C1
4
= ( hor./vert. cliques) and C2

4
= ( diag. cliques)

• Then

V (xr, xs) =















β1δ(xr 6= xs) for {xr, xs} ∈ C1

β2δ(xr 6= xs) for {xr, xs} ∈ C2

• Define

t1(x)
4
=

∑

{s,r}∈C1

δ(xr 6= xs)

t2(x)
4
=

∑

{s,r}∈C2

δ(xr 6= xs)

• Then the probability is given by

p(x) =
1

Z
exp {−(β1t1(x) + β2t2(x))}
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Conditional Probability of a Pixel

Neighbors Xs

Xs

Cliques Containing Xs

X4 Xs

X1

Xs

X7

Xs

X6

Xs

X3

Xs

X2Xs

X8

Xs

X5

Xs

X4

X1

X7

X6

X3

X2

X8

X5

• The probability of a pixel given all other pixels is

p(xs|xi6=s) =
1
Z exp {− ∑

c∈C Vc(xc)}
∑M−1

xs=0
1
Z exp {− ∑

c∈C Vc(xc)}

• Notice: Any term Vc(xc) which does not include xs cancels.

p(xs|xi6=s) =
exp

{

−β1
∑4

i=1 δ(xs 6= xi) − β2
∑8

i=5 δ(xs 6= xi)
}

∑M−1
xs=0 exp {−β1

∑4
i=1 δ(xs 6= xi) − β2

∑8
i=5 δ(xs 6= xi)}
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Conditional Probability of a Pixel (Continued)

Neighbors Xs

xs

1 V1(0,x∂s) = 21

1

0 0 0

0

0

V1(1,x∂s) = 2
V2(0,x∂s) = 1
V2(1,x∂s) = 3

• Define

v1(xs, ∂xs)
4
= # of horz./vert. neighbors 6= xs

v2(xs, ∂xs)
4
= # of diag. neighbors 6= xs

• Then

p(xs|xi6=s) =
1

Z ′
exp {−β1v1(xs, ∂xs) − β2v2(xs, ∂xs)}

where Z ′ is an easily computed normalizing constant

• When β1, β2 > 0, Xs is most likely to be the majority neighboring class.
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Line Process MRF [3]
Pixels

Line sites

MRF

β1=0

β2=2.7

β3=1.8

β4=0.9

β5=1.8

β6=2.7

Clique Potentials

• Line sites fall between pixels

• The values β1, · · · , β2 determine the potential of line sites

• The potential of pixel values is

V (xs, xr, lr,s) =















(xs − xr)
2 if lr,s = 0

0 if lr,s = 1

• The field is

– Smooth between line sites

– Discontinuous at line sites



EE641 Digital Image Processing II: Purdue University VISE - October 23, 2006 22

References

[1] J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society B,
36(2):192–236, 1974.

[2] J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society B, 48(3):259–302, 1986.

[3] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans.

on Pattern Analysis and Machine Intelligence, PAMI-6:721–741, November 1984.

[4] R. Kindermann and J. Snell. Markov Random Fields and their Applications. American Mathematical Society, Providence,
1980.

[5] L. Onsager. Crystal statistics i. a two-dimensional model. Physical Review Letters, 65:117–149, 1944.

[6] R. E. Peierls. On Ising’s model of ferromagnetism. Proc. Camb. Phil. Soc., 32:477–481, 1936.

[7] R. E. Peierls. Statistical theory of adsorption with interaction between the adsorbed atoms. Proc. Camb. Phil. Soc.,
32:471–476, 1936.


