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Continuous State MRF’s

e Topics to be covered:

— Quadratic functions
— Non-Convex functions
— Continuous MAP estimation

— Convex functions
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Why use Non-Gaussian MRF’s?

e Gaussian MRF’s do not model edges well.

e In applications such as image restoration and tomography, Gaussian MRE’s
either

— Blur edges

— Leave excessive amounts of noise
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Gaussian MRF’s

e Zero mean Gaussian MRFE’s have density functions with the form
1

1
p(x) = o &XP {—MxtBﬁC}

e [t can be shown that
t'Br =Y ax+ Y byl|r, — 2,/
sesS {s,r}eC
where
A
s = 2. BS,T
res
A
bs,r — _Bs,r
e We will further assume that a, = 0 and %, by, = 1, so that

logp(x) = -+ ¥ bylry—x,]* —logZ
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MAP Estimation with Gaussian MRF’s

e MAP estimate has the form
T =argmin{—logp(y|z) + ¥ bylr, — x|

{s,r}eC

e Problem:

— The terms |z, — z,|* penalize rapid changes in gray level.

— Quadratic function, | - |?, excessively penalizes image edges.
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Non-Gaussian MRF’s Based on Pair-Wise Cliques

e We will consider MRF's with pair-wise cliques

(@)= { > b (x - :1:)}
T) = —exp{— o
b A P {s,r}eC P o

|zs — x| - is the change in gray level.

o - controls the gray level variation or scale.

p(A):
— Known as the potential function.

— Determines the cost of abrupt changes in gray level.

— p(A) = |AJ* is the Gaussian model.

dp(A
INER
— Known as the influence function from “M-estimation” [14, 11].

— Determines the attraction of a pixel to neighboring gray levels.
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Weak Spring Model

e Proposed by Blake and Zisserman [3, 2] as a model of a “weak spring” that
can break if the values of adjacent pixels differ too much.

p(A) = min {A? 1}

Blake_Zisserman Potential Function Blake_Zisserman Influence Function
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e [' - idge magnitude

A > T = no attraction from influence function
A < T = Gaussian smoothing
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Non-Convex Potential Functions

Authors p(A) Ref. Potential func. Influence func.

Geman and McClure TrA 7, 8]

Biake_Zsserman Poiantal Functon Bike_Zsserman nfuence Funcion

Blake and Zisserman min {A% 1} |3, 2]

Hebert and Leahy log (1+ A?) [10]
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Geman and Reynolds THAl 6]
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Properties of Non-Convex Potential Functions

e Advantages
— Very sharp edges

— Very general class of potential functions
e Disadvantages

— Difficult (impossible) to compute MAP estimate
— Usually requires the choice of an edge threshold

— MAP estimate is a discontinuous function of the data
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Continuous (Stable) MAP Estimation|4]

e Minimum of non-convex function can change abruptly.

TXl %) X1 }(2
location of location of
minimum minimum

e Discontinuous MAP estimate for Blake and Zisserman potential.

Noisy Signals Unstable Reconstructions
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e Theorem:[4] - If the log of the posterior density is strictly convex, then
the MAP estimate is a continuous function of the data.
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Convex Potential Functions
Authors(Name) p(A) Ref. Potential func. Influence func.

BesagepomaFuncion . cesageinmwenceFuncion

Besag |A| 1]

,,,,,,,,,,,,,,,,,,,,

Green log cosh A 9]

Stevenson and Delp
(Huber function)

min {|A]?,2|A| -1} [17]

Bouman and Sauer j
(Generalized Gaus- |AJP 4] :
sian MRF)
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Properties of Convex Potential Functions

e Both log cosh(A) and Huber functions

— Quadratic for |A| << 1
— Linear for |A| >> 1

— Transition from quadratic to linear determines edge threshold.
e Generalized Gaussian MRF (GGMRF) functions

— Include |A| function
— Do not require an edge threshold parameter.

— Convex and differentable for p > 1.

11
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Parameter Estimation for Continuous MRF’s

e Topics to be covered:

— Estimation of scale parameter, o

— Estimation of temperature, T, and shape, p

12
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ML Estimation of Scale Parameter, o, for
Continuous MRF’s [5]

e For any continuous state Gibbs distribution

1
Zoy P {=Ula/o)

p(x) =

the partition function has the form
Z(o)=o"Z(1)

e Using this result the ML estimate of ¢ is given by

o d
1=
Naol &) . 0

e This equation can be solved numerically using any root finding method.

13
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ML Estimation of ¢ for GGMREF’s [12, 5]

e For a Generalized Gaussian MRF (GGMRF)

plo) = gy o |~ U]

pa?

where the energy function has the property that for all o > 0
Ulax) = o’U(x)

e Then the ML estimate of o is

i (]ifU@))(l/p)

e Notice for that for the i.i.d. Gaussian case, this is

1
5 p— e 2
7 JNg\:m
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Estimation of Temperature, 7', and Shape, p,
Parameters

e ML estimation of T'|§]

— Used to estimate T" for any distribution.

— Based on “off line” computation of log partition function.

e Adaptive method [13]
— Used to estimate p parameter of GGMRF.

— Based on measurement of kurtosis.
e ML estimation of p[16, 15]
— Used to estimate p parameter of GGMRF.

— Based on “off line” computation of log partition function.

15
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Example Estimation of p Parameter

—log-likelinood ———>
& & &
-log-likelihood --->
-log likelinood --->
&

a7k
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e ML estimation of p for (a) transmission phantom (b) natural image (c) image corrupted

with Gaussian noise. The plot below each image shows the corresponding negative log-

likelihood as a function of p. The ML estimate is the value of p that minimizes the plotted
function.
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