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1 Discrete Value Markov Random Fields

A serious disadvantage of Markov chain structures is that they lead to image
models that are not isotropic. This is due to the fact that one must choose a
1-D ordering of the pixels. In fact for most applications, there is not natural
1-D ordering for the pixels in a plain.

Markov random fields (MRF) have been introduced as a class of image
models that do not require a 1-D ordering of the image pixels, and therefore
can produce more natural and isotropic image models. However, as we will
see the disadvantage of MRF models is that problems such as parameter
estimation can be much more difficult do to the intractable nature of the
required normalizing constant. The key theorem required to work around
this limitation is the Hammersley-Clifford Theorem which will be presented
in detail. The following sections explain the theory and methods associated
with discrete valued MRF's.

1.1 Definition of MRF and Gibbs Distributions

Before we can define an MRF, we must first define the concept of a neighbor-
hood system. Let S be a set of lattice points with elements s € S. Then we
use the notation ds to denote the neighbors of s. Notice that Js is a subset
of S, so the function 0 is a mapping from S to power set of .S, or equivalently
the set of all subsets of S denoted by 2°.

However, not any mapping 0s qualifies as a neighborhood system. In order
for 0s to be a neighborhood system, it must meet the following symmetry
constraint.

Definition 1 (Neighborhood system) Let S be a lattice of points, then
any mapping 0 : S — 2° is a neighborhood system if for all s,r € S

reds=secor alsos¢ds

In other words, if r is a neighbor of s, then s must be a neighbor of r.
Notice that this definition is not restricted to a regular lattice. However, if
the lattice S is a regular lattice, and the neighborhood is spatially invariant,
then symmetry constraint necessitates that the neighbors of a point must
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Figure 1: An eight point a) neighborhood system, and b) its associated cliques.

be symmetrically distributed about each pixel. Figure la) shows such a
symmetric 8-point neighborhood.

We may now give a general definition for MRF's.

Definition 2 (Discrete(Continuous) Markov Random Field) Let X €
Q be a discrete(continuous) valued random field defined on the lattice S

with neighborhood system Os. Further assume that the X has probability

mass(density) function p(x). Then we say that X is a Markov random field

(MRF) if its density function has the property that for all x € €

p(@s|wy for v # s) = p(xs|zo,) -

Notice that each pixel on is only dependent on its neighbors.

A limitation of MRFs is that their definition does not yield a natural
method for writing down the MRF’s distribution. For this purpose, we will
need to introduce the Gibbs distribution. We start by defining the concept of
cliques which will be an integral part of the structure of Gibbs distributions.

Definition 3 (Clique) Given a lattice S and neighborhood system Os, a
clique is any set of lattice points ¢ C S such at for all s,r € ¢, r € Os.

Cliques are sets of point which are all neighbors of one another. Examples of
cliques for an eight point neighborhood system on a rectangular are illustrated
in Figure 1b) With this definition of cliques, we may now define the concept
of a Gibbs distribution.
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Definition 4 (Discrete (Continuous) Gibbs Distribution) Let p(x) be
the probability mass(density) function of a discrete(continuous) valued ran-
dom field X4 € Q defined on the lattice S with neighborhood system Os. Then
we say that p(x) is a Gibbs distribution if it can be written in the form

1
o) = oo - £ Vit |
ceC
where C is the set of all cliques, Z is known as the partition function, and

Ve(x.) are any functions, of x..

We sometimes refer to the function V.(x.) as a potential function and the
function

Ulx) = > Ve(xe)

ceC
as the energy function.

The important result that relates MRFs and Gibbs distributions is the
Hammersley-Clifford Theorem/[1] stated below.

Theorem 1 Hammersley-Clifford Theorem

Let X be a discrete(continuously) valued MRF, and let p(x) be its probability
mass(density) function each with lattice S and neighborhood system Os. Then
X is an MRF if and only if p(z) is a Gibbs distribution.

1.2 1-D MRFs and Markov Chains

1.3 The Ising Model and
2 Simulation

2.1 Stationary Distributions of Markov Chains

In this section, we present the basic results of Markov chain theory that we
will need to analyze simulation methods [3]. The fundamental concept is
that a well behaved Markov chain will eventually reach a stable stationary
distribution after the transient behavior dies away. The objective will be to
define the technical conditions that ensure that this happens.
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Let {X,}°°, be a discrete valued and discrete state stationary Markov

chain taking values in the set ). Define the notation 7r( = P{X, = j}, then
the probability mass function of the Markov chain has the property

nH =D 7T Pij . (1)

1€

Using matrix notation, we can also write
) = 7 p (2)

where P is a matrix with rows that sum to 1. Repeated application of (2)
results in the equation

n+m Z 7r ” . (3)

1€Q
where P is defined by the recursion

m+1 __
Pi,j Z k:PkJ :

We next define a number of properties for stationary Markov chains that
we will need.

Definition 5 Communicating states
The states i,j € € of a Markov chain are said to communicate if there exists
integers nand m such that P; >0 and P/ > 0.

Intuitively, two states communicate if it is possible to transition between the
two states. It is easily shown that communication is an equivalence property,
so it partitions the set of states into disjoint sets that all communicate with
each other. This leads to a natural definition for irreducible Markov chains.

Definition 6 Irreducible
A discrete time discrete state stationary Markov chain is said to be irreducible
if for all i, j € Q) there exists an integer n such that P"; > 0.

So a Markov chain is irreducible if it can move from any initial state to any
other state in finite time.

In some cases, a state of a Markov chain my repeat periodically. This type
of periodic repetition can last indefinitely.
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Definition 7 Periodic states

We denote the period of a state i € Q by the value d(i) where d(i) is the
largest integer so that Pj; = 0 whenever n is not divisible by d(i). If d(i) > 1,
then we say that the state 1 is pertodic.

It can be shown that states of a Markov chain that communicate must have
the same period. Therefore, all the states of an irreducible Markov chain
must have the same period. We say that the an irreducible Markov chain is
aperiodic if all the states have period 1.

Using these definitions, we may now state a theorem which gives basic
conditions for convergence of the distribution of the Markov chain.

Theorem 2 Limit Theorem for Markov Chains
Let X,, € Q be a discrete-state discrete-time homogeneous Markov chain with
transition probabilities P; ; and the following additional properties

e () is a finite set
o The Markov chain s 1rreducible

e The Markov chain is aperiodic

There exists a unique stationary distribution w, which for all states i is given
by

mj = Jim, Py > 0 ()
and which is the unique solution to the following set of equations.

1€€)
mpo= 2 mbij. (6)

1€)
The relations of (6) are sometimes called the full balance equations (FBE).
Any probability density which solves the FBE is guaranteed to be the station-
ary distribution of the Markov chain. Furthermore, in the limit as n — oo,
the Markov chain is guaranteed to converged to this stationary distribution
independently of the initial state. Markov chains that have this property of
(4) are said to be ergodic. It can be shown that for ergodic Markov chains,
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expectations of state variables can be replace by time averages, which will be
very useful in later sections.

Theorem 2 gives relatively simple conditions to establish that a Markov
chain has a stationary distribution. However, while it may be known that a
stationary distribution exists, it may be very difficult to compute the solution
of the FBEs to determine the precise form of that distribution. It is often
useful to use the property of reversibility as a method to solve this problem.
First we must show that the time reverse of a Markov chain is itself a Markov
chain.

Proposition 1 Time Reverse of Markov Chains
Let {X,}22 . be a Markov Chain. Then the time reversed process Y, = X _,,
s also a Markov chain.

Since the time reversal of a Markov chain is also a Markov chain, it must also
have a transition distribution which we denote at @); ;. Therefore, we know
that

P{X, =i, Xpr1=j}=7P;=m""Qj .

If the Markov chain has a stationary distribution, then 7 = 7" =«
we have that

nt1and

mib; = miQji -
Furthermore, if the Markov chain is reversible, then we know that P; ; = @); ;.
This yields the so-called detailed balance equations (DBE).

mi P = 7P, (7)

The DBE specify that the rate of transitions from state ¢ to state j equals the
rate of transitions from state j to ¢. This is always the case when a Markov
chain is reversible.

Definition 8 Reversible Markov Chains
A Markov chain with transition probabilities P; j is said to be reversible if there
exists a stationary distribution which solves the detailed balance equations of

(7).

Notice that if one finds a solution to the DBE, then this solution must also
be a solution to the FBE, and is therefore the stationary distribution of an
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ergodic Markov chain. To see this
> mibiy = > mib
1€Q) 1€Q)
= 72 P
i€
Finally, it is useful to study the convergence behavior of Markov chains.
Let us consider the case when the Markov chains state €) is finite. In this
case, we may use a matrix representation for P. We know that any matrix
P may be diagonalized using eigen decomposition and expressed in the form

P=FE"'AE

where the rows of E are the left hand eigenvectors of P, and A is a diagonal
matrix of eigenvalues. Using this decomposition, we can see that

Pm = pP"2EAElEAE
— Pm—2 E_1A2E
— E'A™E

So the distribution at time n is given by
™ = zOp-IA"E

When P corresponds to a irreducible and aperiodic Markov chain, then it
must have a stationary distribution. In this case, exactly one of the eigenval-
ues is 1, and the remaining eigenvalues have magnitude strictly less then 1.
In this way, we can see that the distribution of 7™ converges geometrically
to its stationary distribution .

2.2 The Gibbs Sampler

In this section, we introduce the Gibbs sampler first presented in [2]. The
Gibbs sample is a general method for producing samples from a distribu-
tion. It is particularly useful when the distribution being sampled is a Gibbs
distribution, and the resulting samples form a Markov random field.

Let X, be a finite dimensional random field that takes on values in a
discrete and finite set €2 for all s € S. If we assume that that the distribution
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of X is strictly positive, then without loss of generality, we know that the
distribution of X can be written in the form

p(r) =~ exp{~u(x)) )

where u(x) is a real valued function. In fact, it is always possible to choose
the neighbors of each pixel so that ds = S. In this case, the entire lattice
S forms a clique, (8) is then a Gibbs distribution, and X is an MRF with a

degenerate neighborhood system. In any case, the marginal distribution of a
pixel can be written as

exp{—u (zs|r;1 # s)}
> exp{—u (zi|zii # 5)}

xleQ

(9)

p(zs|lxii #s) =

We can generate samples from the distribution of (8) by using the following
Gibbs sampler algorithm.

Gibbs Sampler Algorithm:
1. Set N = # of pixels
2. Order the N pixels as N = s(0),---,s(N — 1)
3. Repeat for £ =0 to oo

(a) Form X*+D from X® via

W if r = s(k)
(k+1) _
Xr { X if r £ s(k)

r

where W ~ p <:Us(k) ’Xi(k)z' + s(k))

We next show that the Gibbs sampler converges to the distribution of (8).

Theorem 3 Stationary Distribution of Gibbs Sampler
Let p(z) be strictly positive distribution on QY where Q is a discrete and finite
set. Then the Gibbs Sampler Algorithm converges to a stationary distribution
with

p(x) = lim P{X® =z} .

k—oo
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Let X have a strictly positive distribution

Notice that in the special case that F;; > 0 for all 7,5 € €}, then the
Markov chain is guaranteed to be both irreducible and aperiodic. This leads
to the following useful corollary.

Theorem 4 Limit Theorem 1 for Markov Chains Let X,, be a discrete-state
discrete-time homogeneous Markov chain such that

e () is a finite set
© ;>0 foralli,j € Q

Then exists a unique stationary distribution
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