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Markov Random Fields

• Noncausal model

• Advantages of MRF’s

– Isotropic behavior

– Only local dependencies

• Disadvantages of MRF’s

– Computing probability is difficult

– Parameter estimation is difficult

• Key theoretical result: Hammersley-Clifford theorem
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Definition of Neighborhood System

• Define

S - set of lattice points

s - a lattice point, s ∈ S

Xs - the value of X at s

∂s - the neighboring points of s

• A neighborhood system ∂s must be symmetric

r ∈ ∂s⇒ s ∈ ∂r also s 6∈ ∂s

• Example of 8 point neighborhood

X(1,4)X(1,3)X(1,2)X(1,1)X(1,0)

X(2,4)X(2,3)X(2,2)X(2,1)X(2,0)

X(3,4)X(3,3)X(3,2)X(3,1)X(3,0)

X(0,4)X(0,3)X(0,2)X(0,1)X(0,0)

X(4,4)X(4,3)X(4,2)X(4,1)X(4,0)

Neighbors of X(2,2)
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Markov Random Field

• Definition: A random object X on the lattice S with neighborhood system
∂s is said to be a Markov random field if for all s ∈ S

p(xs|xr for r 6= s) = p(xs|x∂r)

• Problem: How do we write down the distribution for an MRF?

Unfortunately
p(x) 6=

∏

s∈S
p(xs|xr for r 6= s)
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Definition of Clique

• A clique is a set of points, c, which are all neighbors of each other

∀s, r ∈ c, r ∈ ∂s

• 8 point neighborhood system

X(1,4)X(1,3)X(1,2)X(1,1)X(1,0)

X(2,4)X(2,3)X(2,2)X(2,1)X(2,0)

X(3,4)X(3,3)X(3,2)X(3,1)X(3,0)

X(0,4)X(0,3)X(0,2)X(0,1)X(0,0)

X(4,4)X(4,3)X(4,2)X(4,1)X(4,0)

Neighbors of X(2,2)

• Example of cliques for 8 point neighborhood

1-point clique

2-point cliques

3-point cliques

4-point cliques

Not a clique
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Gibbs Distribution

xc - The value of X at the points in clique c.

Vc(xc) - A potential function is any function of xc.

• A (discrete) density is a Gibbs distribution if

p(x) =
1

Z
exp











−
∑

c∈C
Vc(xc)











C is the set of all cliques

Z is the normalizing constant for the density.

• Z is known as the partition function.

• U(x) =
∑

c∈C
Vc(xc) is known as the energy function.
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Hammersley-Clifford Theorem[1]

















X is a Markov random field
&

∀x, P{X = x} > 0

















⇐⇒









P{X = x} has the form
of a Gibbs distribution









• Gives you a method for writing the density for a MRF

• Does not give the value of Z, the partition function.

• Positivity, P{X = x} > 0, is a technical condition which we will generally
assume.
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Markov Chains are MRF’s

Xn-2 Xn-1 Xn Xn+1 Xn+2

Neighbors of Xn

• Neighbors of n are ∂n = {n− 1, n + 1}

• Cliques have the form c = {n− 1, n}

• Density has the form

p(x) = p(x0)
N
∏

n=1
p(xn|xn−1)

= p(x0) exp











N
∑

n=1
log p(xn|xn−1)











• The potential functions have the form

V (xn, xn−1) = − log p(xn|xn−1)
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1-D MRF’s are Markov Chains

• Let Xn be a 1-D MRF with ∂n = {n− 1, n + 1}

• The discrete density has the form of a Gibbs distribution

p(x) = p(x0) exp











−
N
∑

n=1
V (xn, xn−1)











• It may be shown that this is a Markov Chain.

• Transition probabilities may be difficult to compute.
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The Ising Model

• First proposed to model 2-D magnetic structures.

• See the work of Peierls for an early treatment[13, 12].

• Kindermann and Snell have a very clear tutorial treatment in [9].

• Lattice geometry

– S is a rectangular lattice of N pixels.

– 4-point neighborhood system with cliques c ∈ C.

– Assume circular boundary conditions for now.

• Lattice energy

– Each pixel Xs ∈ {−1,+1} corresponding to north and south poles.

– Potential of clique {r, s} ∈ C is −J
2XrXs.

– Total energy is

u(x) = −
J

2

∑

{r,s}∈C
XrXs .
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Physical Basis of Gibbs Distribution

•What is the equilibrium distribution pe(x)?

• Expected energy is
E{pe} =

∑

x
pe(x)u(x)

• Entropy is
H{pe} =

∑

x
−pe(x) log pe(x)

• First Law of Thermodynamics: Expected energy must be constant.

• Second Law of Thermodynamics: Entropy must be maximized.

pe(x) = arg max
pe:E{pe}=const

H{pe}

• Solution is the Gibbs distribution!

p(x) =
1

z
exp











−
1

kT
u(x)











– T is tempurature

– k is Boltzmann’s constant
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Distribution for Ising Model

• Equalibrium distribution for Ising model is

p(x) =
1

z
exp















J

2kT

∑

{r,s}∈C
XrXs















=
1

z
exp















J

kT

∑

{r,s}∈C







1

2
− δ(Xr 6= Xs)





















=
1

z′
exp















−β
∑

{r,s}∈C
δ(Xr 6= Xs)















where β = J
kT is a model parameter and δ(Xr 6= Xs) is an indicator function

for the event Xr 6= Xs.

• By the Hammersly-Clifford Theorem, X is a MRF with a 4-point neighbor-
hood.
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Interpretation of Ising Model
- - - -

- - - -

- - - +

- - - +

- - - -

- + + -

+ + + -

+ - -

- - - -

- - - -

- - - -

- - - -

- + - -

+ + - -

- + - -

- - - -

+

Cliques: Xr Xs Xr

Xs

Boundary:

• Potential functions are given by

V (xr, xs) = βδ(xr 6= xs)

• Energy function is given by
∑

c∈C
Vc(xc) = β(Boundary length)

• Interpretation of probability density

p(x) =
1

z
exp{−β(Boundary length)}

• Longer boundaries ⇒ less probable
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Conditional Probability of a Pixel in Ising Model

Neighbors Xs

Xs

Cliques Containing Xs

X4 Xs

X1

Xs

X3

Xs

X2XsX4

X1

X3

X2

• The probability of a pixel given all other pixels is

p(xs|xi6=s) =
1
Z exp {−

∑

c∈C Vc(xc)}
∑M−1
xs=0

1
Z exp {−

∑

c∈C Vc(xc)}

• Notice: Any term Vc(xc) which does not include xs cancels.

p(xs|xi6=s) =
exp

{

−β ∑4
i=1 δ(xs 6= xi)

}

∑M−1
xs=0 exp {−β ∑4

i=1 δ(xs 6= xi)}
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Conditional Probability of a Pixel in Ising Model
(Continued)

Neighbors Xs

xs

1 V (0,x∂s) = 1
0

0

0 V (1,x∂s) = 3

• Define

v(xs, ∂xs)
4
= # of horzontal/vertical neighbors 6= xs

• Then

p(xs|xi 6=s) =
exp {−βv(xs, ∂xs)}

∑

x′s={−1,+1}
exp {−βv(x′s, ∂xs)}

•When β > 0, Xs is most likely to be the majority neighboring class.
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Conditional Distribution Plots

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Probability that X
s
 = 1

Number of neighbors not equal to 1

P
ro

ba
bi

lit
y

β =  0.00
β =  0.25
β =  0.50
β =  0.75
β =  1.00
β =  1.25

• P{Xs = 1|Xr for r 6= s} for different values of β.
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Critical Temperature Behavior[13, 12, 9]

Center Pixel X- :

B B B B

B - - -

B - - +

B - - +

B B B B

- + + B

+ + + B

+ - B

B - - -

B - - -

B - - -

B B B B

- + - B

+ + - B

- + - B

B B B B

+

B - - - - + + B

B

-

-

-

-

-

-

B

-

N

N

• 1
β is analogous to temperature.

• Peierls showed that for β > βc

lim
N→∞

P (X0 = 0|B = 0) 6= lim
N→∞

P (X0 = 0|B = 1)

• The effect of the boundary does not diminish as N →∞!

• βc ≈ .88 is known as the critical temperature.

• Very nice proof of critical temperature in [9].
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Critical Temperature Analysis[11]

• Amazingly, Onsager was able to compute the following result as N →∞.

E[X0|B = 1] =























(

1− 1
(sinh(β))4

)1/8
if β > βc

0 if β < βc

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

Inverse Temperature

M
ea

n 
F

ie
ld

 V
al

ue

• Onsager also computed an analytic expression for Z(T )!
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M-Level MRF[3]
0 0 0 0

0 2 0 0

0 0 0 1

0 0 0 1

0 0 0 0

0 1 1 0

1 1 1 0

1 0 0

0 0 2 2

0 0 2 2

0 0 0 2

0 0 0 0

2 1 0 0

1 1 0 0

0 1 0 0

0 0 0 0

1

Cliques:

Xr Xs Xr

Xs

Xr

Xs

Xr

Xs

Neighbors: Xs

• Define C1
4
= ( hor./vert. cliques) and C2

4
= ( diag. cliques)

• Then

V (xr, xs) =















β1δ(xr 6= xs) for {xr, xs} ∈ C1

β2δ(xr 6= xs) for {xr, xs} ∈ C2

• Define

t1(x)
4
=

∑

{s,r}∈C1

δ(xr 6= xs)

t2(x)
4
=

∑

{s,r}∈C2

δ(xr 6= xs)

• Then the probability is given by

p(x) =
1

Z
exp {−(β1t1(x) + β2t2(x))}
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Conditional Probability of a Pixel

Neighbors Xs

Xs

Cliques Containing Xs

X4 Xs

X1

Xs

X7

Xs

X6

Xs

X3

Xs

X2Xs

X8

Xs

X5

Xs

X4

X1

X7

X6

X3

X2

X8

X5

• The probability of a pixel given all other pixels is

p(xs|xi6=s) =
1
Z exp {−

∑

c∈C Vc(xc)}
∑M−1
xs=0

1
Z exp {−

∑

c∈C Vc(xc)}

• Notice: Any term Vc(xc) which does not include xs cancels.

p(xs|xi6=s) =
exp

{

−β1
∑4
i=1 δ(xs 6= xi)− β2

∑8
i=5 δ(xs 6= xi)

}

∑M−1
xs=0 exp {−β1

∑4
i=1 δ(xs 6= xi)− β2

∑8
i=5 δ(xs 6= xi)}
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Conditional Probability of a Pixel (Continued)

Neighbors Xs

xs

1 V1(0,x∂s) = 21

1

0 0 0

0

0

V1(1,x∂s) = 2

V2(0,x∂s) = 1

V2(1,x∂s) = 3

• Define

v1(xs, ∂xs)
4
= # of horz./vert. neighbors 6= xs

v2(xs, ∂xs)
4
= # of diag. neighbors 6= xs

• Then

p(xs|xi6=s) =
1

Z ′
exp {−β1v1(xs, ∂xs)− β2v2(xs, ∂xs)}

where Z ′ is an easily computed normalizing constant

•When β1, β2 > 0, Xs is most likely to be the majority neighboring class.
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Line Process MRF [5]
Pixels

Line sites

MRF

β1=0

β2=2.7

β3=1.8

β4=0.9

β5=1.8

β6=2.7

Clique Potentials

• Line sites fall between pixels

• The values β1, · · · , β2 determine the potential of line sites

• The potential of pixel values is

V (xs, xr, lr,s) =















(xs − xr)
2 if lr,s = 0

0 if lr,s = 1

• The field is

– Smooth between line sites

– Discontinuous at line sites
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Simulation

• Topics to be covered:

– Gibbs sampler

– Metropolis sampler

– Hastings-Metropolis sampler
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Generating Samples from a Gibbs Distribution

• How do we generate a random variable X with a Gibbs distribution?

p(x) =
1

Z
exp {−U(x)}

• Generally, this problem is difficult.

• Markov Chains can be generated sequentially

• Non-causal structure of MRF’s makes simulation difficult.
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Gibbs Sampler[5]

• Replace each point with a sample from its conditional distribution

p(xs|x
k
i i 6= s) = p(xs|x∂s)

• Scan through all the points in the image.

• Advantage

– Eliminates need for rejections ⇒ faster convergence

• Disadvantage

– Generating samples from p(xs|x∂s) can be difficult.
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Gibbs Sampler Algorithm

Gibbs Sampler Algorithm:

1. Set N = # of pixels

2. Order the N pixels as N = s(0), · · · , s(N − 1)

3. Repeat for k = 0 to ∞

(a) Form X (k+1) from X (k) via

X (k+1)
r =















W if r = s(k)
X (k)

r if r 6= s(k)

where W ∼ p
(

xs(k)
∣

∣

∣

∣

∣

X
(k)
∂s(k)

)
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The Metropolis Sampler[10, 9]

• How do we generate a sample from a Gibbs distribution?

p(x) =
1

Z
exp {−U(x)}

• Start with the sample xk, and generate a new sample W with probability
q(w|xk).

Note: q(w|xk) must be symmetric.

q(w|xk) = q(xk|w)

• Compute ∆E(W ) = U(W )− U(xk), then do the following:

If ∆E(W ) < 0

– Accept: Xk+1 = W

If ∆E(W ) ≥ 0

– Accept: Xk+1 = W with probability exp{−∆E(W )}

– Reject: Xk+1 = xk with probability 1− exp{−∆E(W )}
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Ergodic Behavior of Metropolis Sampler

• The sequence of random fields, Xk, form a Markov chain.

• Let p(xk+1|xk) be the transition probabilities of the Markov chain.

• Then Xk is reversible

p(xk+1|xk) exp{−U(xk)} = exp{−U(xk+1)}p(xk|xk+1)

• Therefore, if the Markov chain is irreducible, then

lim
k→∞

P{Xk = x} =
1

Z
exp{−U(x)}

• If every state can be reached, then as k → ∞, Xk will be a sample from
the Gibbs distribution.
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Example Metropolis Sampler for Ising Model

xs

0

1

0

0

• Assume xks = 0.

• Generate a binary R.V., W , such that P{W = 0} = 0.5.

∆E(W ) = U(W )− U(xks)

=















0 if W = 0
2β if W = 1

If ∆E(W ) < 0

– Accept Xk+1
s = W

If ∆E(W ) ≥ 0

– Accept: Xk+1
s = W with probability exp{−∆E(W )}

– Reject: Xk+1
s = xks with probability 1− exp{−∆E(W )}

• Repeat this procedure for each pixel.

•Warning: for β > βc convergence can be extremely slow!
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Example Simulation for Ising Model(β = 1.0)

• Test 1

2 4 6 8 10 12 14 16

2

4

6

8
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12

14

16

Ising model: Beta = 1.000000, Iteration = 10

2 4 6 8 10 12 14 16

2

4
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8

10

12

14

16

Ising model: Beta = 1.000000, Iteration = 50

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Ising model: Beta = 1.000000, Iteration = 100

2 4 6 8 10 12 14 16

2

4

6

8
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12

14

16

• Test 2

2 4 6 8 10 12 14 16

2
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6

8
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12

14

16

Ising model: Beta = 1.000000, Iteration = 10

2 4 6 8 10 12 14 16

2
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Ising model: Beta = 1.000000, Iteration = 50

2 4 6 8 10 12 14 16
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Ising model: Beta = 1.000000, Iteration = 100

2 4 6 8 10 12 14 16
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16

• Test 3

2 4 6 8 10 12 14 16
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Ising model: Beta = 1.000000, Iteration = 10
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Ising model: Beta = 1.000000, Iteration = 50
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Ising model: Beta = 1.000000, Iteration = 100
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• Test 4
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Ising model: Beta = 1.000000, Iteration = 10
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Ising model: Beta = 1.000000, Iteration = 50
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Ising model: Beta = 1.000000, Iteration = 100
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Uniform Random 10 Iterations 50 Iterations 100 Iterations
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Advantages and Disadvantages of Metropolis
Sampler

• Advantages

– Can be implemented whenever ∆E is easy to compute.

– Has guaranteed geometric convergence.

• Disadvantages

– Can be slow if there are many rejections.

– Is constrained to use a symmetric transition function q(xk+1|xk).
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Hastings-Metropolis Sampler[8, 14]

• Hastings and Peskun generalized the Metropolis sampler for transition func-
tions q(w|xk) which are not symmetric.

• The acceptance probability is then

α(xks, w) = min















1,
q(xk|w)

q(w|xk)
exp{−∆E(w)}















• Special cases

q(w|xk) = q(xk|z) ⇒ conventional Metropolis

q(ws|x
k) = p(xks|x

k
∂s)

∣

∣

∣

∣xk
s=ws

⇒ Gibbs sampler

• Advantage

– Transition function may be chosen to minimize rejections[7]
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Parameter Estimation for Discrete State MRF’s

• Topics to be covered:

– Why is it difficult?

– Coding/maximum pseudolikehood

– Least squares
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Why is Parameter Estimation Difficult?

• Consider the ML estimate of β for an Ising model.

• Remember that

t1(x) = (# horz. and vert. neighbors of different value.)

• Then the ML estimate of β is

β̂ = argmax
β















1

Z(β)
exp {−βt1(x)}















= argmax
β
{−βt1(x)− logZ(β)}

• However, logZ(β) has an intractable form

logZ(β) = log
∑

x
exp {−βt1(x)}

• Partition function can not be computed.
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Coding Method/Maximum Pseudolikelihood[2, 3]

4 pt
Neighborhood Code 1

Code 2

Code 3

Code 4

• Assume a 4 point neighborhood

• Separate points into four groups or codes.

• Group (code) contains points which are conditionally independent given the
other groups (codes).

β̂ = argmax
β

∏

s∈Codek
p(xs|x∂s)

• This is tractable (but not necessarily easy) to compute
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Least Squares Parameter Estimation[4]

• It can be shown that for an Ising model

log
P{Xs = 1|x∂s}

P{Xs = 0|x∂s}
= −β (V1(1|x∂s)− V1(0|x∂s))

• For each unique set of neighboring pixel values, x∂s, we may compute

– The observed rate of log P{Xs=1|x∂s}
P{Xs=0|x∂s}

– The value of (V1(1|x∂s)− V1(0|x∂s))

– This produces a set of over-determined linear equations which can be
solved for β.

• This least squares method is easily implemented.



EE641 Digital Image Processing II: Purdue University VISE - November 18, 2002 36

Theoretical Results in Parameter Estimation for
MRF’s

• Inconsistency of ML estimate for Ising model[15, 16]

– Caused by critical temperature behavior.

– Single sample of Ising model cannot distinguish between high β with
mean 1/2, and low β with large mean.

– Not identifiable

• Consistency of maximum pseudolikelihood estimate[6]

– Requires an identifiable parameterization.
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