

EE 641 DIGITAL IMAGE PROCESSING II
 Assignment #2 - Fall 2000

1. Run class demos for
 - a) Optimization methods
 - b) Markov Chains and processes
2. Let $f : \mathbb{R}^N \rightarrow \mathbb{R}$ and $g : \mathbb{R}^N \rightarrow \mathbb{R}$ be convex functions, and let A be an $N \times M$ matrix. Prove that
 - a) $h(x) = f(Ax)$ for $x \in \mathbb{R}^M$ is a convex function.
 - b) $h(x) = f(x) + g(x)$ is a convex function.
 - c) $f(x)$ is continuous.
3. Let $f : \mathbb{R}^N \rightarrow \mathbb{R}$ be a strictly convex continuously differentiable function. Prove that if $\nabla f(x^*) = 0$ if and only if x^* is the unique global minimum of $f(\cdot)$.
4. Let X_i be i.i.d. random variables with $P\{X_i = k\} = \pi_k$ for $k = 0, \dots, M-1$. Also, assume that Y_i are conditionally independent given X with $p(y_i|x_i) \sim N(\mu_{x_i}, \gamma_{x_i})$. Derive a EM algorithm algorithm for estimating the parameters $\theta = (\pi, \mu, \gamma)$.
5. Let $\{X_i\}_{i=0}^N$ be a Markov Chain with $X_i \in \{0, \dots, M-1\}$ with transition probabilities given by

$$P\{X_i = k | X_{i-1} = l\} = P_{l,k}$$

where $0 \leq k, l < M$, and initial condition $P\{X_0 = k\} = \pi_k$. Compute an expression for the ML estimates of $\theta = (\pi, P)$.

6. Let Y be a 1-D AR process with $h_n = \rho \delta_{n-1}$ and σ^2 prediction variance. Compute (σ_{NC}^2, g) the noncausal prediction variance and the noncausal prediction filter.