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EE641-Digital Image Processing II
Fall 2002

Reading List

1 Overview references

A good reference covering 1-D stochastic processes and Markov chains is [29]. An early paper by Dubes
and Jain [13] also contains a nice overview of both continous and discrete random field models, and the
book by Chellappa and Jain contains tutorial chapters on specified topics [10].

2 Gaussian Random Fields

The papers by Kashyap and Chellappa [11, 20] give a very good overview of 2-D Gaussian random field
models and the related issues.

3 Mixture Distributions and the EM Algorithm

The reference [25] contains a high level tutorial overview. However, I recommend a careful reading of
Baum’s original 1970 paper [2] or his earlier paper [3] as the best method for learning the basic algorithm.
Next I suggest reading a very nice paper by Aitkin and Rubin [1] to see how the EM algorithm can be
applied to a standard problem such as clustering using Gaussian mixture distributions.

The paper by Wu [33] gives a clear overview of the basic convergence properties of the EM algorithm,
however, for detailed proofs of convergence of the sequence of estimates, one can refer to [28].

The paper by Rabiner and Juang [27] is an excellent introduction to hidden Markov Models, but it does
not contain much on the application of the EM (or equivalently Baul-Welch) algorithms to HMMs.
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4 Discrete Markov Random Fields

The paper-back book by Kindermann and Snell [21] is an excellent introduction to MRFs.
The seminal paper by Besag [4] introduces and proves the Hammersley-Clifford theorem, and the paper

by Onsager [26] derives an exact expression for the partition function of an Ising model in the limit as its
size approaches infinity.

The later Besag paper [5] contains an clear and intuitive discussion of the application of MRFs to
segmentation, and also introduces the ICM algorithm. The exact solution to binary MAP segmentation
problems is contain in [18]. Geman and Geman introduces the Gibbs sampler, its application to MAP
estimation, and prior model known as a line process in their well known paper [15]. Marroquin, Mitter,
and Poggio introduce the MPM algorithm in [24], and Comer and Delp introduce the EM/MPM algorithm
in [12]. Finally, Bouman and Liu present an early treatment of multiresolution MAP estimation in [7].

5 Continuous Markov Random Fields

Blake introduced the concept of the weak-spring model for MRF potential function design in [6]. Then D.
Geman discussed potential function selection and introduced what-is-now-called ”half-quadratic reqular-
ization” in [14]. See [8] and [30] for an introduction to generalized Gaussian MRF models.

The original application of the EM algorithm to ML estimation of images from photon limited data was
introduced by Shepp and Vardi in their well-known paper [32]. However, this work did not incorporate a
prior distribution or penalty weighting in the optimization cost functional. Perhaps the earliest research on
MAP estimation for tomography problems was contained in the somewhat obscure conference publications
by S. Geman and McClure [16, 17]. Levitan and Herman also presented a framework for MAP image
reconstruction using the EM algorithm in [23], but they did not present an algorithm for computing the
solution for the tomography problem. Later, Hebert and Leahy presented the generalized EM algorithm
(GEM) [19] which is an algorithm for computing the MAP reconstruction using EM. In [22], Lange studies
the convergence properties the MAP reconstruction algorithms and the various prior models of the time.

Sauer and Bouman introduced a coordinate descent method for computing MAP estimates that does
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not depend on the use of an EM formulation in [31, 9]. This paper also introduces the computational
methods of the ICD algorithm and the frequency analysis for convergence.
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