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Application of MRF’s to Segmentation

• Topics to be covered:

– The Model

– Bayesian Estimation

– MAP Optimization

– Parameter Estimation

– Other Approaches
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Bayesian Segmentation Model

1

2

3

0

Y - Texture feature vectors 
observed from image.

X - Unobserved field containing
the class of each pixel

• Discrete MRF is used to model the segmentation field.

• Each class is represented by a value Xs ∈ {0, · · · ,M − 1}

• The joint probability of the data and segmentation is

P{Y ∈ dy,X = x} = p(y|x)p(x)

where

– p(y|x) is the data model

– p(x) is the segmentation model
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Bayes Estimation

• C(x,X) is the cost of guessing x when X is the correct answer.

• X̂ is the estimated value of X .

• E[C(X̂,X)] is the expected cost (risk).

• Objective: Choose the estimator X̂ which minimizes E[C(X̂,X)].
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Maximum A Posteriori (MAP) Estimation

• Let C(x,X) = δ(x 6= X)

• Then the optimum estimator is given by

X̂MAP = argmax
x

px|y(x|Y )

= argmax
x

log
py,x(Y, x)

py(Y )

= argmax
x
{log p(Y |x) + log p(x)}

• Advantage:

– Can be computed through direct optimization

• Disadvantage:

– Cost function is unreasonable for many applications



EE641 Digital Image Processing II: Purdue University VISE - November 14, 2012 5

Maximizer of the Posterior Marginals (MPM)
Estimation[12]

• Let C(x,X) =
∑

s∈S
δ(xs 6= Xs)

• Then the optimum estimator is given by

X̂MPM = argmax
xs

pxs|Y (xs|Y )

• Compute the most likely class for each pixel

• Method:

– Use simulation method to generate samples from px|y(x|y).

– For each pixel, choose the most frequent class.

• Advantage:

– Minimizes number of misclassified pixels

• Disadvantage:

– Difficult to compute
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Simple Data Model for Segmentation

• Assume:

– xs ∈ {0, · · · ,M − 1} is the class of pixel s.

– Ys are independent Gaussian random variables with mean µxs and vari-
ance σ2

xs
.

py|x(y|x) =
∏

s∈S

1
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2πσ2
xs
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2


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
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

• Then the negative log likelihood has the form

− log py|x(y|x) =
∑

s∈S
l(ys|xs)

where

l(ys|xs) = −
1

2σ2
xs

(ys − µxs)
2 −

1

2
log

(

2πσ2
xs

)



EE641 Digital Image Processing II: Purdue University VISE - November 14, 2012 7

More General Data Model for Segmentation

• Assume:

– Ys are conditionally independent given the class labels Xs

– Xs ∈ {0, · · · ,M − 1} is the class of pixel s.

• Then
− log py|x(y|x) =

∑

s∈S
l(ys|xs)

where
l(ys|xs) = − log pys|xs(ys|xs)
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MAP Segmentation

• Assume a prior model for X ∈ {0, · · · ,M − 1}|S| with the form

px(x) =
1

Z
exp{−β

∑

{i,j}∈C
δ(xi 6= xj)}

=
1

Z
exp{−βt1(x)}

where C is the set of 4-point neighboring pairs

• Then the MAP estimate has the form

x̂ = argmin
x

{

− log py|x(y|x) + βt1(x)
}

= argmin
x















∑

s∈S
l(ys|xs) + β

∑

{i,j}∈C
δ(xi 6= xj)















• This optimization problem is very difficult
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An Exact Solution to MAP Segmentation

•When M = 2, the MAP estimate can be solved exactly in polynomial time

– See [9] for details.

– Based on minimum cut problem and Ford-Fulkerson algorithm [5].

– Works for general neighborhood dependencies

– Only applies to binary segmentation case
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Approximate Solutions to MAP Segmentation

• Iterated Conditional Models (ICM) [2]

– A form of iterative coordinate descent

– Converges to a local minima of posterior probability

• Simulated Annealing [6]

– Based on simmulation method but with decreasing temperature

– Capable of “climbing” out of local minima

– Very computationally expensive

• MPM Segmentation [12]

– Use simulation to compute approximate MPM estimate

– Computationally expensive

• Multiscale Segmentation [3]

– Search space of segmentations using a course-to-fine strategy

– Fast and robust to local minima

• Other approaches

– Dynamic programming does not work in 2-D, but approximate recursive solutions to

MAP estimation exist[4, 13]

– Mean field theory as approximation to MPM estimate[14]
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Iterated Conditional Modes (ICM) [2]

• Minimize cost function with respect to the pixel xr

x̂r = argmin
xr


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


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

∑

s∈S
l(ys|xs) + β

∑

{i,j}∈C
δ(xi 6= xj)















= argmin
xr











l(yr|xr) + β
∑

s∈∂r
δ(xs 6= xr)











= argmin
xr
{l(yr|xr) + βv1(xr, x∂r)}

• Initialize with the ML estimate of X

[x̂ML]s = arg min
0≤m<M

l(ys|m)
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ICM Algorithm

ICM Algorithm:

1. Initialize with ML estimate

xs ← arg min
0≤m<M

l(ys|m)

2. Repeat until no changes occur

(a) For each s ∈ S

xs ← arg min
0≤m<M

{l(ys|m) + βv1(m,x∂s)}

• For each pixel replacement, cost decreases ⇒ cost functional converges

• Variation: Only change pixel value when cost strictly decreases

• ICM + Variation ⇒ sequence of updates converge in finite time

• Problem: ICM is easily trapped in local minima of the cost functional
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Low Tempurature Limit for Gibb Distribution

• Consider the Gibbs distribution for the discrete random field X with tem-
purature parameter T

pT (x) =
1

Z
exp











−
1

T
U(x)











• For x 6= x̂MAP , then U(x̂MAP ) < U(x) and

lim
T↓0

pT (x̂MAP )

pT (x)
= lim

T↓0
exp











1

T
(U(x)− U(x̂MAP ))











= ∞

Since pT (x̂MAP ) ≤ 1, we then know that x 6= x̂MAP

lim
T↓0

pT (x) = 0

So if x̂MAP is unique, then

lim
T↓0

pT (x̂MAP ) = 1
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Low Temperature Simulation

• Select “small” value of T

• Use simulation method to generate sample X∗ form the distribution

pT (x) =
1

Z
exp











−
1

T
U(x)











• Then pT (X
∗) ∼= pT (x̂MAP )

• Problem:

T too large ⇒ X∗ is far from MAP estimate

T too small ⇒ convergence of simulation is very slow

• Solution:

Let T go to zero slowly

Known as simulated annealing
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Simulated Anealing with Gibbs Sampler[6]

Gibbs Sampler Algorithm:

1. Set N = # of pixels

2. Select “annealing schedule”: Decreasing sequence Tk

3. Order the N pixels as N = s(0), · · · , s(N − 1)

4. Repeat for k = 0 to ∞

(a) Form X (k+1) from X (k) via

X (k+1)
r =















W if r = s(k)
X (k)

r if r 6= s(k)

where W ∼ pTk

(

xs(k)
∣

∣

∣

∣

∣

X
(k)
∂s(k)

)

• For example problem:

U(x) =
∑

s∈S
l(ys|xs) + βt1(x)

and

pTk (xs |x∂s) =
1

z′
exp











−
1

Tk
( l(ys|xs) + βv1(xs, x∂s) )










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Convergence of Simulated Annealing [6]

• Definitions:

– N - number of pixels

– ∆ = argmaxxU(x)− argminxU(x)

• Let

Tk =
N∆

log(k + 1)

Theorem: The the simulation converges to x̂MAP almost surely. [6]

• Problem: This is very slow!!!

• Example: N = 10000, ∆ = 1 ⇒ Te10000−1 = 1/2.

• More typical annealing schedule that achieves approximate solution

Tk = T0







TK

T0







k/K
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Segmentation Example

• Iterated Conditional Modes (ICM): ML ; ICM 1; ICM 5; ICM 10
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• Simulated Annealing (SA): ML ; SA 1; SA 5; SA 10
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Maximizer of the Posterior Marginals (MPM)
Estimation[12]

• Let C(x,X) =
∑

s∈S
δ(xs 6= Xs)

• Then the optimum estimator is given by

X̂MAP = argmax
x

pxs|Y (xs|Y )

• Compute the most likely class for each pixel

• Method:

– Use simulation method to generate samples from px|y(x|y).

– For each pixel, choose the most frequent class.

• Advantage:

– Minimizes number of misclassified pixels

• Disadvantage:

– Difficult to compute
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MPM Segmentation Algorithm [12]

• Define the function

X ← Simulate(Xinit, px|y(x|y))

This function applies one full pass of a simulation algorithm with stationary
distribution px|y(x|y) and starting with initial value Xinit.

MPM Algorithm:

1. Select parameters M1 and M2

2. For i = 0 to M1 − 1

(a) Repeat M2 times

X ← Simulate(X, px|y(x|y))

(b) Set X (i) ← X

3. For each s ∈ S, compute

x̂s ← arg max
0≤m<M

M1−1
∑

i=0
δ
(

X (i) = m
)
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Multiscale MAP Segmentation

• Renormalization theory[8]

– Theoretically results in the exact MAP segmentation

– Requires the computation of intractable functions

– Can be implemented with approximation

• Multiscale segmentation[3]

– Performs ICM segmentation in a coarse-to-fine sequence

– Each MAP optimization is initialized with the solution from the previous
coarser resolution

– Used the fact that a discrete MRF constrained to be block constant is
still a MRF.

• Multiscale Markov random fields[10]

– Extended MRF to the third dimension of scale

– Formulated a parallel computational approach
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Multiscale Segmentation [3]

• Solve the optimization problem

x̂MAP = argmin
x











∑

s∈S
l(ys|xs) + β1t1(x) + β2t2(x)











• Break x into large blocks of pixels that can be changed simultaneously

• Make large scale moves can lead to

– Faster convergence

– Less tendency to be trapped in local minima
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Formulation of Multiscale Segmentation [3]

• Pixel blocks

– The sth block of pixels

d(k)(s) = {(i, j) ∈ S : (⌊i/2k⌋, ⌊j/2k⌋) = s}

– Example: If k = 3 and s = (0, 0), then
d(k)(s) = [(0, 0), · · · , (7, 0), (0, 1), · · · , (7, 1), · · · , (0, 7), · · · , (7, 7)]

• Coarse scale statistics:

– We say that x is 2k-block-constant if there exists an x(k) such that for
all r ∈ d(k)(s)

xr = x(k)s

– Coarse scale likelihood functions

l(k)s (m) =
∑

r∈d(k)(s)

l(yr|m)

– Coarse scale statistics

t
(k)
1
△
= t1

(

x(k)
)

t
(k)
2
△
= t2

(

x(k)
)
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Recursions for Likelihood Function

• Organize blocks of image in quadtree structure

• Let d(s) denote the four children of s, then

l(k)s (m) =
∑

r∈d(s)
l(k−1)r (m)

where l(0)s (m) = l(ys|m).

• Complexity of recursion is order O(N) for N = # of pixels
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Recursions for MRF Statistics

• Count statistics at each scale

t    =2
t    =1

(0)

1

(0)x x(1)

2

1

1 1

0

1
(1)

(1)

11

1 1

1 1 1 1

1 1 1 1

0 0

00

2t    =5(0)

t    =4

Image Image

• If x is 2k-block-constant, then

t
(k−1)
1 = 2t

(k)
1

t
(k−1)
2 = 2t

(k)
1 + t

(k)
2
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Parameter Scale Recursion [3]

• Assume x is 2k-block-constant. Then we would like to select parameters

β
(k)
1 and β

(k)
2 so that the energy functions match at each scale.

This means that

β
(k)
1 t

(k)
1 + β

(k)
2 t

(k)
2 = β

(k−1)
1 t

(k−1)
1 + β

(k−1)
2 t

(k−1)
2

• Substituting the recursions for t
(k)
1 and t

(k)
2 yeilds recursions for the param-

eters β
(k)
1 and β

(k)
2 .

β
(k)
1 = 2

(

β
(k−1)
1 + β

(k−1)
2

)

β
(k)
2 = β

(k−1)
2

• Courser scale ⇒ large β ⇒ more smoothing

• Alternative approach: Leave β’s constant
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Multiple Resolution Segmentation (MRS) [3]

MRS Algorithm:

1. Select coarsest scale L and parameters β
(k)
1 and β

(k)
2

2. Set l(0)s (m)← l(ys|m).

3. For k = 1 to L, compute: l(k)s (m) =
∑

r∈d(s) l
(k−1)
r (m)

4. Compute ML estimate at scale L: x̂(L)s ← argmin0≤m<M l(L)s (m)

5. For k = L to 0

(a) Perform ICM optimization using inital condition x̂(L)s until converged

x̂(k) ← ICM
(

x̂(k), u(k)(·)
)

where

u(k)
(

x̂(k)
)

=
∑

s
l(k)s (x̂(k)s ) + β

(k)
2 t

(k)
1 + β

(k)
2 t

(k)
2

(b) if k > 0 compute initial condition using block replication

x̂(k−1) ← Block Replication(x̂(k))

6. Output x̂(0)
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Texture Segmentation Example

a b
c d

a) Synthetic image with 3 textures b) ICM - 29 iterations c) Simulated
Annealing - 100 iterations d) Multiresolution - 7.8 iterations
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Parameter Estimation

XRandom Field 
Model

θ

Physical System
Y

Data Collection

φ

• Question: How do we estimate θ from Y ?

• Problem: We don’t know X !

• Solution 1: Joint MAP estimation [11]

(θ̂, x̂) = argmax
θ,x

p(y, x|θ)

– Problem: The solution is biased.

• Solution 2: Expectation maximization algorithm [1, 7]

θ̂k+1 = argmax
θ

E[log p(Y,X|θ)|Y = y, θk]

– Expectation may be computed using simulation techniques or mean field
theory.
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