PURDUE

ECE 64100

Midterm Exam, November 7, Fall 2025

NAME PUID

Exam instructions:
e A fact sheet is included at the end of this exam for your use.
¢ You have 60 minutes to work the exam.
e This is a closed-book and closed-note exam. You may not use or have access to your book, notes, any
supplementary reference, a calculator, or any communication device including a cell-phone or computer.
¢ You may not communicate with any person other than the official proctor during the exam.

To ensure Gradescope can read your exam:
e Write your full name and PUID above and on the top of every page.
o Answer all questions in the area designated for each problem.
o Write only on the front of the exam pages.
e DO NOT run over to the next question.




Name/PUID:
Problem 1.(35pt) Causal and Non-Causal MRF's
Let X,, be a zero-mean 1-D Gaussian AR process indexed by n, and let h,, be the MMSE causal

prediction filter and 020 be the causal prediction variance.
In addition, let g, be the MMSE non-causal prediction filter with non-causal prediction variance

given by O'JQVC.

Problem 1a) Write an expression for the power spectrum Sy (w) of the random process in terms

of the causal model parameters (o2, hy,).

Problem 1b) Write an expression for the power spectrum Sx (w) of the random process in terms

of the noncausal model parameters (0%, gn).-

Problem 1c) Derive an equation that relates (02, hy,) to (0%, 9n) to by equating the equations

of parts a) and b) above.
Problem 1d) Determine g, the non-causal prediction filter in terms of hy,, 02, and 0%

Problem 1e) Determine 0% the non-causal prediction variance in terms of (02, hy,).



Name/PUID:
Problem 2.(21pt) Shrinkage Operator

Consider the proximal map given by

1
Sy(y) = in <\ ~|z — y|?
N argxrg}gv{ 2l + S llz =yl }

Problem 2a) Calculate an explicit form for the function Sy(y) when N = 1.
Problem 2b) Calculate an explicit form for the function Sy(y) when N > 1.

Problem 2c) Explain in words (i.e., emotionally) what S)(y) does.



Name/PUID:
Problem 3.(21pt) Proximal Maps

Consider the proximal map given by
H(y) = arg min, { 5y ol + b(o) |
= arg min | —||ly — x x
Y g TN 2 Y
For this problem, we will interpret H(y) as a MAP estimate of Z given y.

Problem 3a) What is the forward model for this MAP estimate? Express your answer by giving

an expression for Y given X.

Problem 3b) What is the prior model for this MAP estimate? Express your answer by giving an

expression for p(z).
Problem 3c) What happens if you iterate H(y), i.e., you do the following:
Repeat{z « H(x)}

Problem 3d) Imagine that you would like to learn the proximal MAP Hy(y) from training data.

Then how would you generate the training data, and how would you estimate 67



Name/PUID:
Problem 4.(35pt) Contraction Mappings

Consider a function H : #2 — R? given by y = H(z) where
01
H(z) = [ 1 o ] x

Problem 4a) Is H(z) a contraction map?
Problem 4b) Is H(x) non-expansive?
Problem 4c) Does the following iteration converge?
Repeat{z « H(x)}

Justify your answer.
Problem 4d) Does the following iteration converge?

Repeat{z «+ (1 — p)z + pH(x)} for p € (0,1)
Justify your answer.

Problem 4e) What does the iteration of 4d converge to?



ECE641 Fact Sheet

Maximum Likelihood (ML) Estimator pz(x) = |det(A)|pe (Ax), |det(A)| =1,
(Frequentist) Rx = (ATA71A)7!

. 1-D Gaussian AR models:
0 = argmaxpy(Y) = arg max log pe(Y)
€

0eQ e Toeplitz H; ;= hi_j
(2 = Vopo(Y)lp—g e Circulant H; j = h(;—jymoan
0= T(Y) th P
~ R o P order IIR filter X,, = &, + >, Xn_ihs,
0= ]EG[Q] Rg(l — j) = E[gzgj] = 0'02-51'—]'
biasg =60 — 6 varg = Ep[(0 — 0)?] o Rx(n)*(6p—hp)*(0n—h_pn) = Re(n) = 026,

MSE = Eg[(6 — 0)?] = vary + (biasg)? Sx = —For

For Y = AX + W, where X and W are independent
zero mean Gaussian distributed with Rx and Ry,
respectively. Then the ML estimate is find by maxi- o & =Xs— ¥ h X, o,

.. TEWP
mizing log(py/.(y/x)):

2-D Gaussian AR:

o Toeplitz block Toeplitz Hy, N4+k,nN+1 = Rm—n,k—1
Xy = (AtR‘jle)ilAtR‘jvly
Non-causal Gaussian Models
A .
o 02 S E[EXX;i # 0], Bij = %(6ij — gij),
02 = (Bn7n)717 In,i = 5n—1’ - U%Bn,i (homoge—

n

. — 2 _ 2
Neous: i j = Gi—j,0; = Onc)

Maximum A Posteriori (MAP) Estimator

Xsap = Y
MAP argglggpﬂy(x\ )

= argrﬂrcleaé(logpw‘y(ﬂY) e G, ;= gf’(j’ r :)diag{a%, 0’%, ._)_7?]2\[}7
. B=T"I-G), '=diag(B)"",G=1-TB
= arg min{— lo +(ylz) — log ps (x ’ ’ ’
gmin{—logpy|.(y|z) —logps(z)} E[E0 X 4] = 0200
For Y = AX + W, where X and W are independent o Rx(n) * (6n — gn) * (0n — g—n) = Re(n) =
. . . . 0.2
zero mean Gaussian distributed with Rx and Ry, 012\[0(571 — gn), Sx = #&)7 Rx(n) * (6, —

respectively. Then the MAP or equivalently MMSE

2
. . gn) = 0N05n
estimate is:

e Relationship b/w AR and GMRF: 0%, =
2

XMAP — (AtR;VIAﬁ’R)_(l)ilAtR;Vly o2
1+25:1 h% ’
J— (5n_h’n)*(6n_h’7’ﬂ) p—
Power Spectral Density gn = On — T+ 7 h2 (= 1fp2 (0n—1 +
(zero-mean WSS Gaussian process) Ont1), P=1)
1D DTFT:
Surrogate Function
Sy (el¥) = Z R(n)e—3wn Our objective is to find a surrogate function p(A; A'),
—— to the potential function p(A).

2D DSFT:
Maximum Curvature Method

Sx (71, e7%2) = Z Z R(m,n)e d@rm=J«2n  Assume the surrogate function of the form
p(A;A) = i A + %(A — )2
Causal Gaussian Models
o2 A E[€2, X = HX, £ = (I - H)X = AX, where ap = p/(A’) and ag = maxacg p”(A).
E[EEY = A, A = diag{0?,03,...,0%}



Symmetric Bound Method

Assume that potential function is bounded by sym-
metric and quadratic function of A, then the surro-
gate function is

p(A;A') = %AQ
which results in the following symmetric bound sur-
rogate function:
P;(AA//)AQ if A/ 7& 0
2O i A =0

p(A;A') = {

Review of Convexity in Optimization

Definition A.6. Closed, Bounded, and Com-
pact Sets

Let A C RV, then we say that A is:
e Closed if every convergent sequence in A has
its limit in A.
e Bounded if 3M such that Vz € A, ||z||< M.
e Compact if A is both closed and bounded.

Definition A.11. Closed Functions

We say that function f : RV — R U {oo} is closed
if for all @ € R, the sublevel set A, = {z € RY :
f(z) < a} is closed set.

Theorem A.6. Continuity of Proper, Closed,
Convex Functions

Let f : RY — R U {oo} be a proper convex func-
tion. Then f is closed if and only if it is lower semi-
continuous.

Optimization Methods:

Gradient Descent: z(Ft1) = z(k) — gV f((*))
Gradient Descent with Line Search:

dk) = —Vf(x(k))

a solves the equation : 0 = W = [Vf(z®+
ad®)]td*),

Update: z*+1) «— 2F + o
A'AA+ B

Coordinate Descent :

—Az)'AA, .—a'B. . B
= |\A)*,s||i+33,s = (for Y[X ~ N(AX, A7)

(yfA:r)f’A*,sz(ZDs*Zreasgsf'ﬁwr) _ o2
+ [ EE=Y A=

4]

(k) =
Hd““)\léd where @

Pairwise quadratic form identity
t 2,1 2
r'Br = Y agxi+s ¥ X be,|lrs—x as = X B
ses % 2,e5re8 sorl@s =], as res o
bs = *Bs,r

Miscellaneous

For any invertible matrix A, 1. %

9(BA) — B 3. tr(AB) = tr(BA)

= |A|A7T 2.



