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Exam instructions:  
• A fact sheet is included at the end of this exam for your use. 
• You have 60 minutes to work the exam.  
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To ensure Gradescope can read your exam:  
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• Answer all questions in the area designated for each problem. 
• Write only on the front of the exam pages. 
• DO NOT run over to the next question.  
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Problem 1.(35pt) Causal and Non-Causal MRFs

Let Xn be a zero-mean 1-D Gaussian AR process indexed by n, and let hn be the MMSE causal

prediction filter and ω
2
C be the causal prediction variance.

In addition, let gn be the MMSE non-causal prediction filter with non-causal prediction variance

given by ω
2
NC .

Problem 1a) Write an expression for the power spectrum SX(ε) of the random process in terms

of the causal model parameters (ω
2
C , hn).

Problem 1b) Write an expression for the power spectrum SX(ε) of the random process in terms

of the noncausal model parameters (ω
2
NC , gn).

Problem 1c) Derive an equation that relates (ω
2
C , hn) to (ω

2
NC , gn) to by equating the equations

of parts a) and b) above.

Problem 1d) Determine gn the non-causal prediction filter in terms of hn, ω
2
C , and ω

2
NC .

Problem 1e) Determine ω
2
NC the non-causal prediction variance in terms of (ω

2
C , hn).
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Problem 2.(21pt) Shrinkage Operator

Consider the proximal map given by

Sω(y) = arg min
x→↑N

{
ϑ→x→1 +

1

2
→x↑ y→2

}

Problem 2a) Calculate an explicit form for the function Sω(y) when N = 1.

Problem 2b) Calculate an explicit form for the function Sω(y) when N > 1.

Problem 2c) Explain in words (i.e., emotionally) what Sω(y) does.
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Problem 3.(21pt) Proximal Maps

Consider the proximal map given by

H(y) = arg min
x→↑N

{
1

2
→y ↑ x→2 + h(x)

}

For this problem, we will interpret H(y) as a MAP estimate of x̂ given y.

Problem 3a) What is the forward model for this MAP estimate? Express your answer by giving

an expression for Y given X.

Problem 3b) What is the prior model for this MAP estimate? Express your answer by giving an

expression for p(x).

Problem 3c) What happens if you iterate H(y), i.e., you do the following:

Repeat{x ↓ H(x)}

Problem 3d) Imagine that you would like to learn the proximal MAP Hε(y) from training data.

Then how would you generate the training data, and how would you estimate ϖ?

4



Name/PUID:

Problem 4.(35pt) Contraction Mappings

Consider a function H : ↔2 ↗ ↔2
given by y = H(x) where

H(x) =

[
0 1

1 0

]
x

Problem 4a) Is H(x) a contraction map?

Problem 4b) Is H(x) non-expansive?

Problem 4c) Does the following iteration converge?

Repeat{x ↓ H(x)}

Justify your answer.

Problem 4d) Does the following iteration converge?

Repeat{x ↓ (1↑ ϱ)x+ ϱH(x)} for ϱ ↘ (0, 1)

Justify your answer.

Problem 4e) What does the iteration of 4d converge to?
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ECE641 Fact Sheet

Maximum Likelihood (ML) Estimator

(Frequentist)

ϖ̂ = argmax
ω→!

pω(Y ) = argmax
ω→!

log pω(Y )

0 = ≃ωpω(Y )|
ω=ω̂

ϖ̂ = T (Y )

ϖ̄ = Eω[ϖ̂]

biasω = ϖ̄ ↑ ϖ varω = Eω[(ϖ̂ ↑ ϖ̄)
2
]

MSE = Eω[(ϖ̂ ↑ ϖ)
2
] = varω + (biasω)

2

For Y = AX +W , where X and W are independent

zero mean Gaussian distributed with RX and RW ,

respectively. Then the ML estimate is find by maxi-

mizing log(py/x(y/x)):

X̂ML = (A
t
R

↑1
W

A)
↑1

A
t
R

↑1
W

y

Maximum A Posteriori (MAP) Estimator

X̂MAP = argmax
x→!

px|y(x|Y )

= argmax
x→!

log px|y(x|Y )

= argmin
x→!

{↑ log py|x(y|x)↑ log px(x)}

For Y = AX +W , where X and W are independent

zero mean Gaussian distributed with RX and RW ,

respectively. Then the MAP or equivalently MMSE

estimate is:

X̂MAP = (A
t
R

↑1
W

A+R
↑1
X

)
↑1

A
t
R

↑1
W

y

Power Spectral Density

(zero-mean WSS Gaussian process)

1D DTFT:

SX(e
jε
) =

↓∑

n=↑↓
R(n)e

↑jεn

2D DSFT:

SX(e
jε1 , e

jε2) =

↓∑

m=↑↓

↓∑

n=↑↓
R(m,n)e

↑jε1m↑jε2n

Causal Gaussian Models

ω
2
n

”
= E[E2

n
], X̂ = HX, E = (I ↑ H)X = AX,

E[EE t
] = !, ! = diag{ω2

1 ,ω
2
2 , ...,ω

2
N
}

px(x) = |det(A)|pE(Ax), |det(A)| = 1,

RX = (A
t
!
↑1

A)
↑1

1-D Gaussian AR models:

• Toeplitz Hi,j = hi↑j

• Circulant Hi,j = h(i↑j)modN

• P
th

order IIR filter Xn = En +
∑

P

i=1 Xn↑ihi,

RE(i↑ j) = E[EiEj ] = ω
2
c
ςi↑j

• RX(n)⇐(ςn↑hn)⇐(ςn↑h↑n) = RE(n) = ω
2
c
ςn,

SX =
ϑ
2
c

|1↑H(ε)|2

2-D Gaussian AR:

• Es = Xs ↑ ”
r→Wp

hrXs↑r,

• Toeplitz block ToeplitzHmN+k,nN+l = hm↑n,k↑l

Non-causal Gaussian Models

• ω
2
n

”
= E[E2

n
|Xi, i ⇒= n], Bi,j =

1
ϑ
2
i
(ςi↑j ↑ gi,j),

ω
2
n
= (Bn,n)

↑1
, gn,i = ςn↑i ↑ ω

2
n
Bn,i (homoge-

neous: gi,j = gi↑j ,ω
2
i
= ω

2
NC

)

• Gi,j = gi,j , # = diag{ω2
1 ,ω

2
2 , ...,ω

2
N
},

B = #
↑1

(I ↑G), # = diag(B)
↑1

, G = I ↑ #B,

E[EnXn+k] = ω
2
NC

ςk

• RX(n) ⇐ (ςn ↑ gn) ⇐ (ςn ↑ g↑n) = RE(n) =

ω
2
NC

(ςn ↑ gn), SX =
ϑ
2
NC

1↑G(ε) , RX(n) ⇐ (ςn ↑
gn) = ω

2
NC

ςn

• Relationship b/w AR and GMRF: ω
2
NC

=

ϑ
2
c

1+
∑P

n=1 h2
n
,

gn = ςn ↑ (ϖn↑hn)↔(ϖn↑h→n)
1+

∑P
n=1 h2

n
(=

ϱ

1+ϱ2 (ςn↑1 +

ςn+1), P = 1)

Surrogate Function

Our objective is to find a surrogate function ϱ($;$
↗
),

to the potential function ϱ($).

Maximum Curvature Method

Assume the surrogate function of the form

ϱ($;$
↗
) = φ1$+

φ2

2
($↑$

↗
)
2

where φ1 = ϱ
↗
($

↗
) and φ2 = max”→R ϱ

↗↗
($).
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Symmetric Bound Method

Assume that potential function is bounded by sym-

metric and quadratic function of $, then the surro-

gate function is

ϱ($;$
↗
) =

φ2

2
$

2

which results in the following symmetric bound sur-

rogate function:

ϱ($;$
↗
) =

{
ϱ
↑(”↑)
2”↑ $

2
if $

↗ ⇒= 0

ϱ
↑↑(0)
2 $

2
if $

↗
= 0

Review of Convexity in Optimization

Definition A.6. Closed, Bounded, and Com-
pact Sets

Let A ⇑ RN
, then we say that A is:

• Closed if every convergent sequence in A has

its limit in A.

• Bounded if ⇓M such that ⇔x ↘ A, →x→< M .

• Compact if A is both closed and bounded.

Definition A.11. Closed Functions

We say that function f : RN ↗ R ↖ {↙} is closed

if for all φ ↘ R, the sublevel set Aς = {x ↘ RN
:

f(x) ∝ φ} is closed set.

Theorem A.6. Continuity of Proper, Closed,
Convex Functions

Let f : RN ↗ R ↖ {↙} be a proper convex func-

tion. Then f is closed if and only if it is lower semi-

continuous.

Optimization Methods:

Gradient Descent: x
(k+1)

= x
(k) ↑ ↼≃f(x

(k)
)

Gradient Descent with Line Search:

d
(k)

= ↑≃f(x
(k)

)

φ solves the equation : 0 =
φf(x(k)+ςd

(k))
φς

= [≃f(x
(k)

+

φd
(k)

)]
t
d
(k)

.

Update: x
(k+1) ↓ x

k
+ φ

↘d(k)↘2

↘d(k)↘2
Q
d
(k)

where Q =

A
t
!A+B

Coordinate Descent :

φ =
(y↑Ax)t#A↓,s↑x

t
B↓,s

↘A↓,s↘2
!+Bs,s

(for Y |X ′ N(AX,!
↑1

))

xs ↓ xs +
(y↑Ax)tA↓,s↑↼(xs↑$r↔ωsgs→rxr)

↘A↓,s↘2+↼
, ϑ =

ϑ
2

ϑ2
x

Pairwise quadratic form identity

x
t
Bx = ”

s→S

asx
2
s
+

1
2 ”
s→S

”
r→S

bs,r|xs↑xr|2, as = ”
r→S

Bs,r,

bs = ↑Bs,r

Miscellaneous

For any invertible matrix A, 1.
φ|A|
φA

= |A|A↑1
2.

φtr(BA)
φA

= B 3. tr(AB) = tr(BA)
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