

PURDUE

ECE 640141

Final Exam, December 16, Fall 2025

NAME _____

PUID _____

Exam instructions:

- A fact sheet is included **at the end of this exam** for your use.
- You have 120 minutes to work the exam.
- This is a closed-book and closed-note exam. You may not use or have access to your book, notes, any supplementary reference, a calculator, or any communication device including a cell-phone or computer.
- You may not communicate with any person other than the official proctor during the exam.

To ensure Gradescope can read your exam:

- Write your full name and PUID above and on the top of every page.
- Answer all questions in the area designated for each problem.
- Write only on the front of the exam pages.
- DO NOT run over to the next question.

Name/PUID: _____ Key _____

Problem 1.(25pt) Maximum Likelihood Estimate

Let Y_n for $n = 0, \dots, N-1$ be i.i.d. random variables with distribution $N(\mu, \sigma^2)$ and define $\theta = (\mu, \sigma^2)$.

1a) Derive the expression for the negative log likelihood, $l(\theta) = -\log_\theta p(y)$.

1b) What are the natural sufficient statistics, $T(y)$, for this family of distributions?

1c) Find an expression for

$$\hat{\mu} = \arg \min_{\mu} l((\mu, \sigma^2)) ,$$

and show that the arg min does not depend on σ^2 .

1d) Find an expression for $l^*(\sigma) = \min_{\mu} l((\mu, \sigma^2))$.

1e) Use the result of part c) above to solve for the maximum likelihood estimate of θ .

$$(\hat{\mu}, \hat{\sigma}) = \arg \min_{(\mu, \sigma)} l((\mu, \sigma)) .$$

Solution:

Q1a:

$$p(y) = \prod_{n=0}^{N-1} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{1}{2\sigma^2} (y_n - \mu)^2 \right\}$$

$$l(\theta) = \sum_{n=0}^{N-1} \left\{ \frac{1}{2\sigma^2} (y_n - \mu)^2 + \frac{1}{2} \log (2\pi\sigma^2) \right\}$$

Q1b: The natural sufficient statistics are

$$b = \sum_{n=0}^{N-1} y_n$$

$$S = \sum_{n=0}^{N-1} y_n^2$$

Q1c: The minimum of $l(\mu, \sigma^2)$ is the solution to

$$0 = \frac{dl(\mu, \sigma^2)}{d\mu} = \sum_{n=0}^{N-1} \frac{1}{\sigma^2} (\mu - y_n)$$

$$0 = \frac{dl(\mu, \sigma^2)}{d\mu} = \sum_{n=0}^{N-1} (\mu - y_n) .$$

which implies that

$$\sum_{n=0}^{N-1} \hat{\mu} = \sum_{n=0}^{N-1} y_n$$

$$N\hat{\mu} = \sum_{n=0}^{N-1} y_n$$

$$\hat{\mu} = \frac{1}{N} \sum_{n=0}^{N-1} y_n ,$$

which is not a function of σ^2 .

Q1d:

$$\begin{aligned}
l(\hat{\mu}, \sigma^2) &= \sum_{n=0}^{N-1} \left\{ \frac{1}{2\sigma^2} (y_n - \hat{\mu})^2 + \frac{1}{2} \log(2\pi\sigma^2) \right\} \\
&= \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (y_n - \hat{\mu})^2 + N \frac{1}{2} \log(2\pi\sigma^2) \\
&= \frac{1}{2\sigma^2} \left\{ \sum_{n=0}^{N-1} y_n^2 - \sum_{n=0}^{N-1} \hat{\mu}^2 \right\} + N \frac{1}{2} \log(2\pi\sigma^2) \\
&= \frac{1}{2\sigma^2} \left\{ S - \sum_{n=0}^{N-1} \left(\frac{b}{N} \right)^2 \right\} + \frac{N}{2} \log(2\pi\sigma^2) \\
&= \frac{N}{2\sigma^2} \left\{ \frac{S}{N} - \left(\frac{b}{N} \right)^2 \right\} + \frac{N}{2} \log(2\pi\sigma^2)
\end{aligned}$$

Q1e: The minimum of $l(\hat{\mu}, \gamma)$ for $\sigma^2 = \gamma$ is the solution to

$$\begin{aligned}
0 &= \frac{dl(\hat{\mu}, \gamma)}{d\gamma} \\
&= \frac{-N}{2\gamma^2} \left\{ \frac{S}{N} - \left(\frac{b}{N} \right)^2 \right\} + \frac{N}{2} \frac{1}{\gamma}
\end{aligned}$$

which implies that

$$\begin{aligned}
\frac{1}{2\gamma^2} \left\{ \frac{S}{N} - \left(\frac{b}{N} \right)^2 \right\} &= \frac{1}{2} \frac{1}{\gamma} \\
\left\{ \frac{S}{N} - \left(\frac{b}{N} \right)^2 \right\} &= \gamma
\end{aligned}$$

So we have that

$$\begin{aligned}
\hat{\sigma}^2 &= \frac{S}{N} - \left(\frac{b}{N} \right)^2 \\
\hat{\mu} &= \frac{b}{N}.
\end{aligned}$$

Name/PUID: _____

Problem 2.(15pt) Maximum Likelihood Estimate

Let Z_n for $n = 0, \dots, N - 1$ be i.i.d. random variables with distribution $P\{Z_n = m\} = \pi_m$ for $m = \{0, \dots, M - 1\}$ and define $\theta = (\pi_0, \dots, \pi_{M-1})$.

2a) Derive the expression for the negative log likelihood, $l(\theta) = -\log_\theta p(z)$.

2b) What are the natural sufficient statistics, $T(z)$, for this family of distributions?

2c) Find an expression for $\hat{\pi} = \arg \min_\pi l(\pi)$.

Solution:

Q2a:

$$\begin{aligned} l(\theta) &= -\log \prod_{n=0}^{M-1} \pi_m^{N_m} \\ &= \sum_{n=0}^{M-1} -N_m \log \pi_m , \end{aligned}$$

where

$$N_m = \sum_{n=0}^{N-1} \delta(Z_n - m) .$$

Q2b: The natural sufficient statistics are given by

$$N_m = \sum_{n=0}^{N-1} \delta(Z_n - m) ,$$

for $m = 0, \dots, M-1$.

Q2c:

$$\hat{\pi}_m = \frac{N_m}{N}$$

Name/PUID: _____

Problem 3.(30pt) Proximal Maps and PnP

Let

$$Y = AX + \sigma W ,$$

where $A \in \mathbb{R}^{M \times N}$, $X \in \mathbb{R}^N$, $W \sim N(0, I)$, and $X \sim p(x)$.

Furthermore, let

$$Z = X + \rho \tilde{W} ,$$

where $\tilde{W} \sim N(0, I)$. Then the minimum measure squared error (MMSE) denoiser is given by

$$H_\rho(Z) = E[X|Z] .$$

3a) Show that for the special case when $X \sim p(x)$ is Gaussian, then the MMSE estimate of X given Z is the same as the MAP estimate of X given Z .

3b) Derive an expression for the function $H_\rho(\cdot)$ as the MAP estimate.

3c) Derive an expression for the function $f(x) = -\log p(y|x)$.

3d) Write out an explicit expression for the proximal map

$$F(v) = \arg \min_x \left\{ f(x) + \frac{1}{2\rho^2} \|x - v\|^2 \right\} .$$

3e) Let \hat{H} be a learned approximation to H_ρ . Describe how \hat{H} can be designed using training data.

3f) Specify the Plug-and-Play (PnP) algorithm in terms of forward model proximal map, F , and the denoiser \hat{H} .

Solution:

Q3a: Since X and Z are jointly Gaussian, the conditional distribution of X given Z must also be Gaussian. Since a Gaussian distribution is unimodal with a symmetric distribution, then we have that the mode must equal the mean. In other words,

$$\arg \max_z p(x|z) = \int xp(x|z)dx .$$

Q3b:

$$H_\rho(z) = \arg \min_x \left\{ \frac{1}{2\rho^2} \|z - x\|^2 - \log p(x) \right\}$$

Q3c:

$$f(x) = \frac{1}{2\sigma^2} \|y - Ax\|^2 + N \log(2\pi\sigma^2)$$

Q3d:

$$F(v) = \arg \min_x \left\{ \frac{1}{2\sigma^2} \|y - Ax\|^2 + \frac{1}{2\rho^2} \|x - v\|^2 \right\}$$

Q3e: Generate training pairs, (X_k, Z_k) with $Z_k = X_k + \rho W$ with $W \sim N(0, I)$. Then form a loss function

$$L(\theta) = \sum_k \|X_k - H_\theta(Z_k)\|^2 .$$

Then use an optimization algorithm to compute

$$\hat{\theta} = \arg \min_\theta L(\theta) .$$

Then the trained estimator is given by $H_{\hat{\theta}}$.

Q3f:

```

 $v \leftarrow 0$ 
 $u \leftarrow 0$ 
repeat {
   $x \leftarrow F(v - u)$ 
   $v \leftarrow \hat{H}(x + u)$ 
   $u \leftarrow u + (x - v)$ 
}

```

Name/PUID: _____

Problem 4.(25pt) EM Algorithm for Poisson Observations

Let X_n for $n = 1, \dots, N$ be a series of i.i.d. multinomial random variables with distribution $P\{X_n = m\} = \pi_m$, and let

$$P\{Y_n = k|X_n = m\} = \frac{e^{-\lambda_m} \lambda_m^k}{k!},$$

be conditionally independent random variables given $X_n = m$, and let $\theta = \{\pi_0, \lambda_0, \dots, \pi_{M-1}, \lambda_{M-1}\}$ parameterize the joint distribution.

Problem 4a) Calculate $\hat{\pi}_m$, the maximum likelihood estimate of π_m given $\{X_n, Y_n\}_{n=1}^N$.

Problem 4b) Calculate $\hat{\lambda}_m$, the maximum likelihood estimate of λ_m given $\{X_n, Y_n\}_{n=1}^N$.

Problem 4c) Use Bayes' rule to calculate an expression for $f(m|y_n) = P\{X_n = m|Y_n = y_n\}$.

Problem 4d) Specify the E-step of the EM algorithm for the estimation of θ for this specific problem.

Problem 4e) Specify the M-step of the EM algorithm for the estimation of θ for this specific problem.

Solution:

Q4a: First compute

$$N_m \leftarrow \sum_{n=1}^N \delta(X_n = m)$$

Then compute

$$\hat{\pi}_m \leftarrow \frac{N_m}{N} .$$

Q4b: First compute

$$\begin{aligned} b_m &\leftarrow \sum_{n=1}^N Y_n \delta(X_n = m) \\ N_m &\leftarrow \sum_{n=1}^N \delta(X_n = m) . \end{aligned}$$

Then compute

$$\hat{\lambda}_m \leftarrow \frac{b_m}{N_m} .$$

Q4c:

$$\begin{aligned} f(m|y_n) &= P\{X_n = m|Y_n = y_n\} \\ &= \frac{1}{Z} \frac{e^{-\lambda_m} \lambda_m^{y_n}}{y_n!} \pi_m , \end{aligned}$$

where

$$Z = \sum_{m=0}^{M-1} \frac{e^{-\lambda_m} \lambda_m^{y_n}}{y_n!} \pi_m .$$

Q4d: The E-step is given by computing the conditional expectation of the sufficient statistics.

$$\begin{aligned} \bar{N}_m &\leftarrow \sum_{n=1}^N f(m|y_n) \\ \bar{b}_m &\leftarrow \sum_{n=1}^N Y_n f(m|y_n) . \end{aligned}$$

Q4e: The M-step is given by updating the parameters.

$$\begin{aligned} \hat{\pi}_m &\leftarrow \frac{\bar{N}_m}{N} \\ \hat{\lambda}_m &\leftarrow \frac{\bar{b}_m}{\bar{N}_m} . \end{aligned}$$

Name/PUID: _____

Problem 5.(25pt) Markov Chains

Let $X_n \in \{0, \dots, M-1\}$ be an irreducible Markov chain with transition probabilities $P \in \mathbb{R}^{M \times M}$. Furthermore, assume that $\forall i, 1 > P_{i,i} > 0$, and $P = P^t$.

Problem 5a) Is X_n a homogeneous Markov chain? Prove your answer.

Problem 5b) Is X_n an aperiodic Markov chain? Prove your answer.

Problem 5c) Is X_n an ergodic Markov chain? Prove your answer.

Problem 5d) Is X_n a reversible Markov chain? Prove your answer.

Problem 5e) What is the stationary distribution of the Markov chain? Prove your answer.

Solution:

Q5a: Yes. This is true because the parameters of the MC are not a function of time.

Q5b: Yes. Since $P_{i,i} > 0$, each state must have the same period of 1.

Q5c: Since MC is irreducible, aperiodic, and has a finite number of states, it must be ergodic.

Q5d: The MC is reversible if and only if it solves the detailed balance equations.

Let $\pi_m = 1/M$ for all states $m \in \{0, \dots, M-1\}$. Then we have that

$$\begin{aligned}\pi_i P_{i,j} &= (1/M) P_{i,j} \\ &= (1/M) P_{j,i} \\ &= \pi_j P_{j,i}.\end{aligned}$$

So the detailed balance equations hold, which implies that the MC is reversible.

Q5e: Since the distribution $\pi_i = (1/M)$ solves the DBE, it must also solve the FBE. So the stationary distribution of the MC is given by

$$p_i = \frac{1}{M}.$$

So this implies that when the transition probabilities are symmetric, then the stationary distribution of the MC is uniform over the states.

ECE641 Fact Sheet

Probability Background

Total Probability

$$P(A) = \sum_n P(A|B_n)P(B_n)$$

Total Probability for Conditional Probabilities

$$P(A|C) = \sum_n P(A|B_n, C)P(B_n|C)$$

Bayes' Rule

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Conditional Joint Probability

$$P(A, B|C) = P(A|B, C)P(B|C)$$

Maximum Likelihood (ML) Estimator (Frequentist)

$$\begin{aligned}\hat{\theta} &= \arg \max_{\theta \in \Omega} p_{\theta}(Y) = \arg \max_{\theta \in \Omega} \log p_{\theta}(Y) \\ 0 &= \nabla_{\theta} p_{\theta}(Y)|_{\theta=\hat{\theta}} \\ \hat{\theta} &= T(Y) \\ \bar{\theta} &= \mathbb{E}_{\theta}[\hat{\theta}] \\ \text{bias}_{\theta} &= \bar{\theta} - \theta \quad \text{var}_{\theta} = \mathbb{E}_{\theta}[(\hat{\theta} - \bar{\theta})^2] \\ \text{MSE} &= \mathbb{E}_{\theta}[(\hat{\theta} - \theta)^2] = \text{var}_{\theta} + (\text{bias}_{\theta})^2\end{aligned}$$

For $Y = AX + W$, where X and W are independent zero mean Gaussian distributed with R_X and R_W , respectively. Then the ML estimate is find by maximizing $\log(p_{y/x}(y/x))$:

$$\hat{X}_{ML} = (A^t R_W^{-1} A)^{-1} A^t R_W^{-1} y$$

Maximum A Posteriori (MAP) Estimator

$$\begin{aligned}\hat{X}_{MAP} &= \arg \max_{x \in \Omega} p_{x|y}(x|Y) \\ &= \arg \max_{x \in \Omega} \log p_{x|y}(x|Y) \\ &= \arg \min_{x \in \Omega} \{-\log p_{y|x}(y|x) - \log p_x(x)\}\end{aligned}$$

For $Y = AX + W$, where X and W are independent zero mean Gaussian distributed with R_X and R_W , respectively. Then the MAP or equivalently MMSE estimate is:

$$\hat{X}_{MAP} = (A^t R_W^{-1} A + R_X^{-1})^{-1} A^t R_W^{-1} y$$

Power Spectral Density (zero-mean WSS Gaussian process)

1D DTFT:

$$S_X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} R(n) e^{-j\omega n}$$

2D DSFT:

$$S_X(e^{j\omega_1}, e^{j\omega_2}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} R(m, n) e^{-j\omega_1 m - j\omega_2 n}$$

Causal Gaussian Models

$$\begin{aligned}\sigma_n^2 &\triangleq \mathbb{E}[\mathcal{E}_n^2], \hat{X} = HX, \mathcal{E} = (I - H)X = AX, \\ \mathbb{E}[\mathcal{E}\mathcal{E}^t] &= \Lambda, \Lambda = \text{diag}\{\sigma_1^2, \sigma_2^2, \dots, \sigma_N^2\}\end{aligned}$$

$$\begin{aligned}p_x(x) &= |\det(A)| p_{\mathcal{E}}(Ax), |\det(A)| = 1, \\ R_X &= (A^t \Lambda^{-1} A)^{-1}\end{aligned}$$

1-D Gaussian AR models:

- Toeplitz $H_{i,j} = h_{i-j}$
- Circulant $H_{i,j} = h_{(i-j) \bmod N}$
- P^{th} order IIR filter $X_n = \mathcal{E}_n + \sum_{i=1}^P X_{n-i} h_i$, $R_{\mathcal{E}}(i-j) = \mathbb{E}[\mathcal{E}_i \mathcal{E}_j] = \sigma_c^2 \delta_{i-j}$
- $R_X(n) * (\delta_n - h_n) * (\delta_n - h_{-n}) = R_{\mathcal{E}}(n) = \sigma_c^2 \delta_n$, $S_X = \frac{\sigma_c^2}{|1 - H(\omega)|^2}$

2-D Gaussian AR:

- $\mathcal{E}_s = X_s - \sum_{r \in W_p} h_r X_{s-r}$,
- Toeplitz block Toeplitz $H_{mN+k, nN+l} = h_{m-n, k-l}$

Non-causal Gaussian Models

- $\sigma_n^2 \triangleq \mathbb{E}[\mathcal{E}_n^2 | X_i, i \neq n]$, $B_{i,j} = \frac{1}{\sigma_i^2} (\delta_{i-j} - g_{i,j})$, $\sigma_n^2 = (B_{n,n})^{-1}$, $g_{n,i} = \delta_{n-i} - \sigma_n^2 B_{n,i}$ (homogeneous: $g_{i,j} = g_{i-j}$, $\sigma_i^2 = \sigma_{NC}^2$)
- $G_{i,j} = g_{i,j}$, $\Gamma = \text{diag}\{\sigma_1^2, \sigma_2^2, \dots, \sigma_N^2\}$, $B = \Gamma^{-1}(I - G)$, $\Gamma = \text{diag}(B)^{-1}$, $G = I - \Gamma B$, $\mathbb{E}[\mathcal{E}_n X_{n+k}] = \sigma_{NC}^2 \delta_k$
- $R_X(n) * (\delta_n - g_n) * (\delta_n - g_{-n}) = R_{\mathcal{E}}(n) = \sigma_{NC}^2 (\delta_n - g_n)$, $S_X = \frac{\sigma_{NC}^2}{|1 - G(\omega)|}$, $R_X(n) * (\delta_n - g_n) = \sigma_{NC}^2 \delta_n$
- **Relationship b/w AR and GMRF:** $\sigma_{NC}^2 = \frac{\sigma_c^2}{1 + \sum_{n=1}^P h_n^2}$, $g_n = \delta_n - \frac{(\delta_n - h_n) * (\delta_n - h_{-n})}{1 + \sum_{n=1}^P h_n^2} (= \frac{\rho}{1 + \rho^2} (\delta_{n-1} + \delta_{n+1}))$, $P = 1$

Surrogate Function

Our objective is to find a surrogate function $\rho(\Delta; \Delta')$, to the potential function $\rho(\Delta)$.

Maximum Curvature Method

Assume the surrogate function of the form

$$\rho(\Delta; \Delta') = \alpha_1 \Delta + \frac{\alpha_2}{2} (\Delta - \Delta')^2$$

where $\alpha_1 = \rho'(\Delta')$ and $\alpha_2 = \max_{\Delta \in \mathbb{R}} \rho''(\Delta)$.

Symmetric Bound Method

Assume that potential function is bounded by symmetric and quadratic function of Δ , then the surrogate function is

$$\rho(\Delta; \Delta') = \frac{\alpha_2}{2} \Delta^2$$

which results in the following symmetric bound surrogate function:

$$\rho(\Delta; \Delta') = \begin{cases} \frac{\rho'(\Delta')}{2\Delta'} \Delta^2 & \text{if } \Delta' \neq 0 \\ \frac{\rho''(0)}{2} \Delta^2 & \text{if } \Delta' = 0 \end{cases}$$

Review of Convexity in Optimization

Definition A.6. *Closed, Bounded, and Compact Sets*

Let $\mathcal{A} \subset \mathbb{R}^N$, then we say that \mathcal{A} is:

- **Closed** if every convergent sequence in \mathcal{A} has its limit in \mathcal{A} .
- **Bounded** if $\exists M$ such that $\forall x \in \mathcal{A}, \|x\| < M$.
- **Compact** if \mathcal{A} is both closed and bounded.

Definition A.11. Closed Functions

We say that function $f : \mathbb{R}^N \rightarrow \mathbb{R} \cup \{\infty\}$ is **closed** if for all $\alpha \in \mathbb{R}$, the sublevel set $\mathcal{A}_\alpha = \{x \in \mathbb{R}^N : f(x) \leq \alpha\}$ is closed set.

Theorem A.6. Continuity of Proper, Closed, Convex Functions

Let $f : \mathbb{R}^N \rightarrow \mathbb{R} \cup \{\infty\}$ be a proper convex function. Then f is closed if and only if it is lower semicontinuous.

Optimization Methods:

Gradient Descent: $x^{(k+1)} = x^{(k)} - \beta \nabla f(x^{(k)})$

Gradient Descent with Line Search:

$$d^{(k)} = -\nabla f(x^{(k)})$$

α solves the equation : $0 = \frac{\partial f(x^{(k)} + \alpha d^{(k)})}{\partial \alpha} = [\nabla f(x^{(k)} + \alpha d^{(k)})]^t d^{(k)}$.

Update: $x^{(k+1)} \leftarrow x^k + \alpha \frac{\|d^{(k)}\|^2}{\|d^{(k)}\|_Q^2} d^{(k)}$ where $Q = A^t \Lambda A + B$

Coordinate Descent :

$$\alpha = \frac{(y - Ax)^t \Lambda A_{*,s} - x^t B_{*,s}}{\|A_{*,s}\|_\Lambda^2 + B_{s,s}} \quad (\text{for } Y|X \sim N(AX, \Lambda^{-1}))$$

$$x_s \leftarrow x_s + \frac{(y - Ax)^t A_{*,s} - \lambda(x_s - \sum_{r \in \partial s} g_{s-r} x_r)}{\|A_{*,s}\|^2 + \lambda}, \quad \lambda = \frac{\sigma^2}{\sigma_x^2}$$

Pairwise quadratic form identity

$$x^t B x = \sum_{s \in S} a_s x_s^2 + \frac{1}{2} \sum_{s \in S} \sum_{r \in S} b_{s,r} |x_s - x_r|^2, \quad a_s = \sum_{r \in S} B_{s,r},$$

$$b_s = -B_{s,r}$$

Miscellaneous

For any invertible matrix A , 1. $\frac{\partial |A|}{\partial A} = |A| A^{-1}$ 2. $\frac{\partial \text{tr}(BA)}{\partial A} = B$ 3. $\text{tr}(AB) = \text{tr}(BA)$

Plug and Play

(non-expansive map)

(CE equations)

$$x^* = F(x^* - u^*)$$

$$x^* = H(x^* + u^*)$$

(Douglas-Rachford algorithm)

set $\rho \in (0, 1)$

initialize w_1

repeat{

$$w'_1 \leftarrow T w_1$$

$$w_1 \leftarrow (1 - \rho)w'_1 + \rho w_1$$

}

return w_1

Note that here $w_1 = x - u$, $w_2 = x + u$, and $x = \frac{w_1 + w_2}{2}$, so then $(2F - I)w_1 = w_2$. And,

$$T = (2H - I)(2F - I).$$

(Convergence of Douglas-Rachford algorithm)

When F and H are proximal maps of proper closed convex functions f and h then Douglas-Rachford algorithm converges to both the CE solution and the MAP estimate.

EM algorithm

General EM Algorithm:

$$\text{E-step} : Q(\theta; \theta^{(k)}) = \mathbb{E}[\log(p(y, X|\theta))|Y = y, \theta^{(k)}]$$

$$\text{M-step} : \theta^{(k+1)} = \arg \max_{\theta \in \Omega} Q(\theta; \theta^{(k)})$$

(ML estimate for Gaussian mixture)

$$\log p(y, x|\theta) = \sum_{n=1}^N \log p(y_n, x_n|\theta) = \sum_{n=1}^N \sum_{m=0}^{M-1} \delta_m \{ \log p(y_n|\mu_m, \sigma_m) + \log \pi_m \}$$

(Exponential Family)

A family of density functions $p_\theta(y)$ for y and θ is said to be an exponential family if there exists functions $\eta(\theta)$, $s(y)$, and $d(\theta)$ and natural statistic $T(y)$ such that $p_\theta(y) = \exp\{\langle \eta(\theta), T(y) \rangle + d(\theta) + s(y)\}$

(sufficient statistic)

$T(Y)$ is a sufficient statistic for the family of distributions $p_\theta(y)$ if the density functions can be written in the form $p_\theta(y) = h(y)g(T(y), \theta)$ where g and h are any two functions.

Markov Chains

Parameter Estimation for Markov Chains: $N_j = \delta(X_0 - j)$, $K_{i,j} = \sum_{n=1}^N \delta(X_n - j) \delta(X_{n-1} - i)$

$$\log(p(x)) = \sum_{j \in \Omega} \{N_j \log(\tau_j) + \sum_{i \in \Omega} K_{i,j} \log(P_{i,j})\}$$

$$\text{ML Estimate } \hat{\tau}_j = N_j \text{ and } \hat{P}_{i,j} = \frac{K_{i,j}}{\sum_{j \in \Omega} K_{i,j}}$$

Marginal density at any time n : $\pi^{(n)} = \pi^{(0)} P^n$ and $\pi^{(\infty)} = \pi^{(0)} P^\infty$

Log likelihood of HMM (MAP Estimate):

$$\hat{x} = \arg \max_{x \in \Omega^N} \{ \log \tau_{x_0} + \sum_{n=1}^N \{ \log f(y_n|x_n) + \log P_{x_{n-1}, x_n} \} \}$$

State Sequence Estimation and Dynamic Programming:

$$L(j, n) = \max_{x_{>n}} \{ \log p(y_{>n}, x_{>n}|x_n = j) \} \text{ and } L(j, N) = 0$$

$$L(i, n-1) = \max_{j \in \Omega} \{ \log f(y_n|j) + \log P_{i,j} + L(j, n) \}$$

$$\hat{x}_0 = \arg \max_{j \in \Omega} \{ \log \tau_j + L(j, 0) \}$$

$$\hat{x}_n = \arg \max_{j \in \Omega} \{ \log P_{x_{n-1}, j} + \log f(y_n|j) + L(j, n) \}$$

State Probability and the Forward-Backward Algorithm:

$$\alpha_n(j) = p(x_n = j, y_n, y_{<n}) \quad \beta_n(j) = p(y_{>n}|x_n = j)$$

$$p(x_{n-1} = i, x_n = j|y) = \frac{\alpha_{n-1}(i) P_{i,j} f(y_n|j) \beta_n(j)}{p(y)}$$

$$\alpha_n(j) = \sum_{i \in \Omega} \alpha_{n-1}(i) P_{i,j} f(y_n|j)$$

$$\beta_n(i) = \sum_{j \in \Omega} P_{i,j} f(y_{n+1}|j) \beta_{n+1}(j)$$

(Irreducible Markov Chain). A discrete-time, discrete-space homogeneous Markov chain is said to be irreducible if for all states $i, j \in \Omega$, i and j communicate.

(Communicating States). States $i, j \in \Omega$ of a discrete-time, discrete-space homogeneous Markov chain are said to communicate if there exists integers $m > 0$ and $n > 0$ such that $[P^m]_{i,j} > 0$ and $[P^n]_{j,i} > 0$.

(period of state) State $i \in \Omega$ of a discrete-time, discrete-space homogeneous Markov chain has period $d(i) = \gcd\{n \in \mathbb{N}_+ | [P^n]_{i,i} > 0\}$.

State i is aperiodic if $d(i) = 1$ and periodic if $d(i) > 1$.

Ergodic MC : $\pi_j = \lim_{n \rightarrow \infty} [P^n]_{i,j} > 0$

(detailed balance equations)

$$\pi_i P_{i,j} = \pi_j P_{j,i}$$

$$\sum_{i \in \Omega} \pi_i = 1$$

(full balance equations)

$$\pi^\infty = \pi^\infty P \text{ or } \pi_j = \sum_{i \in \Omega} \pi_i P_{i,j}$$

$$\sum_{i \in \Omega} \pi_i = 1$$

Stochastic Sampling

(inverse transform sampling)

$X \leftarrow F^{-1}(U)$ where $U \leftarrow \text{Rand}([0, 1])$ and $F^{-1}(u) = \inf\{x | F(x) \geq u\}$ generates a sample from random variable X with CDF $F(x) = P\{X \leq x\}$

(Metropolis algorithm)

initialize X^0

for k from 0 to $K - 1\{$

$U \leftarrow \text{Rand}([0, 1])$

$W \leftarrow Q^{-1}(U | X^{(k)})$

$\alpha \leftarrow \min\{1, e^{-[u(W) - u(X^{(k)})]}\}$

$U \leftarrow \text{Rand}([0, 1])$

if $U < \alpha$ then $X^{(k+1)} \leftarrow W$

else $X^{(k+1)} \leftarrow X^{(k)}$

}

Note: where $Q^{-1}(\cdot | x^{(k)})$ is the inverse CDF corresponding to proposal density $q(w | x^{(k)})$