PURDUE

ECE 640141

Final Exam, December 16, Fall 2025

NAME PUID

Exam instructions:
e A fact sheet is included at the end of this exam for your use.
¢ You have 120 minutes to work the exam.
e This is a closed-book and closed-note exam. You may not use or have access to your book, notes, any
supplementary reference, a calculator, or any communication device including a cell-phone or computer.
¢ You may not communicate with any person other than the official proctor during the exam.

To ensure Gradescope can read your exam:
e Write your full name and PUID above and on the top of every page.
o Answer all questions in the area designated for each problem.
o Write only on the front of the exam pages.
e DO NOT run over to the next question.




Name/PUID: Key

Problem 1.(25pt) Maximum Likelihood Estimate

Let Y, for n = 0,...,N — 1 be i.i.d. random variables with distribution N(u,c?) and define
0 = (u,0?).

1a) Derive the expression for the negative log likelihood, () = — logy p(y).
1b) What are the natural sufficient statistics, T'(y), for this family of distributions?

1c) Find an expression for
i = argminl((g, 0?)) ,
m

and show that the arg min does not depend on o2.

1d) Find an expression for I*(o) = min,, {((1, 0?)).
le) Use the result of part c) above to solve for the maximum likelihood estimate of 6.

(ji,6) = arg min I((41,0)) -
(1s0)



Solution:

Qla:

N—-1
b= UYn
n=
N-1
S=> un
n=0

dl(p, o 1
0=M0T) N L)
K n=0
N-1
dl(p, o?
0= TET) 5 )
K n=0
which implies that
N-1 N—1
po= Yn
n=0 n=0
N—1
Np = Yn
n=0
) | V-1
H = N Yn
n=0

which is not a function of o2.



Qld:

N-1
1.0 = 3 { g m — 0+ 3 1og (2r%) |

= 20
1 = 1
_ N2 2
=553 2 (n — )" + N3 log (270%)
n=0
(Nl N-1 1
_ 2 ~2 2
_202{ Yy — }+N210g(27r0)
n=0 n=0
N-1 2
1 b N 9
_M{S_ (N) +§10g (2mo?)
n=0
N |5 b\?| N
= —< —— | = ~log (270?
202{N <N>}+2 og (2707)

Qle: The minimum of I(j,7) for ? = v is the solution to

dl(j

dy
_ NS (VL N
232 | N N 2 v

which implies that

So we have that



Name/PUID:
Problem 2.(15pt) Maximum Likelihood Estimate
Let Z, for n = 0,...,N — 1 be i.i.d. random variables with distribution P{Z,, = m} = =, for
m ={0,...,M — 1} and define 6 = (7, ..., Tpr—1).

2a) Derive the expression for the negative log likelihood, I(0) = — logy p(2).
2b) What are the natural sufficient statistics, T'(z), for this family of distributions?

2c¢) Find an expression for 7 = arg ming (7).



Solution:

Q2a:
M-1
1) = —log [] mhm
n=0
M—1
= Z —Np, log o,
n=0
where
N-1
Ny =Y 6(Zn—m)
n=0

Q2b: The natural sufficient statistics are given by

N-1
Nepw= > 6(Zn—m),
n=0

form=0,...,M —1.

Q2c:



Name/PUID:
Problem 3.(30pt) Proximal Maps and PnP
Let

Y=AX4+ocW ,

where A € RM*XN X ¢ RN, W~ N(0,1), and X ~ p(z).
Furthermore, let
Z=X+pW,

where W ~ N (0,7). Then the minimum measure squared error (MMSE) denoiser is given by
H,(Z) = E|X|Z] .

3a) Show that for the special case when X ~ p(z) is Gaussian, then the MMSE estimate of X

given Z is the same as the MAP estimate of X given Z.

3b) Derive an expression for the function H,(-) as the MAP estimate.

3c) Derive an expression for the function f(z) = —logp(y|x).

3d) Write out an explicit expression for the proximal map

P = argunin{ f0) + Ll — o}

3e) Let H be a learned approximation to H p- Describe how H can be designed using training data.

3f) Specify the Plug-and-Play (PnP) algorithm in terms of forward model proximal map, F', and
the denoiser H.



Solution:
Q3a: Since X and Z are jointly Gaussian, the conditional distribution of X given Z must also be
Gaussian. Since a Gaussian distribution is unimodal with a symmetric distribution, then we have

that the mode must equal the mean. In other words,

arg max p(x|z) = /mp(w|z)dm :

Q3b:
. 1
() = angmin { 515 2~ P~ logp(o) |
Q3c:
1
F(&) = 5oglly — As|? + Nlog(2m0?)
Q3d:

1
2 2
= AalP + 5 5le = o |

. 1
P(v) = argmin {202”

Q3e: Generate training pairs, (X, Zx) with Z, = Xy + pW with W ~ N(0, ). Then form a loss
function

L(0) =) || Xk — Ho(Zy)|” -
k
Then use an optimization algorithm to compute

0 = arg Ingin L(9) .

Then the trained estimator is given by H.

Q3f:

v <40
u <0
repeat {

x4 F(v—u)
v H(z+u)

u—u+(x—v)



Name/PUID:
Problem 4.(25pt) EM Algorithm for Poisson Observations

Let X, forn =1,--- , N be a series of i.i.d. multinomial random variables with distribution P{X,, =
m} = mp, and let
e~ Am Ak
PAY, = k| Xy = m} = —="
be conditionally independent random variables given X,, = m, and let 8 = {mo, Ao, -+ , Tar—1, A1}

parameterize the joint distribution.

Problem 4a) Calculate 7,,, the maximum likelihood estimate of , given {X,, Yn}fl\le.
Problem 4b) Calculate 5\m, the maximum likelihood estimate of A, given {X,,, Yn}gzl.
Problem 4c) Use Bayes’ rule to calculate an expression for f(mly,) = P{X,, = m|Y, = yn}.

Problem 4d) Specify the E-step of the EM algorithm for the estimation of 6 for this specific

problem.

Problem 4e) Specify the M-step of the EM algorithm for the estimation of 6 for this specific

problem.



Solution:

Q4a: First compute

Then compute

Q4b: First compute

Then compute

Q4c:
f(m’yn) = P{Xn = m|Yn = yn}
1 e~ Am \Yn
AT
where
—)\m )\yn

Z= Z

Q4d: The E-step is given by computing the conditional expectation of the sufficient statistics.

N
N =Y f(mlyn)
n=1

N
b 3 Y f(mlyn) -
n=1

Q4e: The M-step is given by updating the parameters.

N
Tm, N
. b,
Am — — .
m Nm



Name/PUID:
Problem 5.(25pt) Markov Chains

Let X,, € {0,..., M — 1} be an irreducible Markov chain with transition probabilities P € RM*M
Furthermore, assume that Vi,1 > P;; > 0, and P = Pt

Problem 5a) Is X,, a homogeneous Markov chain? Prove your answer.
Problem 5b) Is X,, an aperiodic Markov chain? Prove your answer.
Problem 5c) Is X,, an ergodic Markov chain? Prove your answer.
Problem 5d) Is X,, a reversible Markov chain? Prove your answer.

Problem 5e) What is the stationary distribution of the Markov chain? Prove your answer.
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Solution:

Qba: Yes. This is true because the parameters of the MC are not a function of time.

Q5b: Yes. Since P;; > 0, each state must have the same period of 1.

Q5c: Since MC is irreducible, aperiodic, and has a finite number of states, it must be ergodic.

Q5d: The MC is reversible if and only if it solves the detailed balance equations.
Let 7, = 1/M for all states m € {0,..., M — 1}. Then we have that

Py = (1/M)P;
= (1/M)P;;

=m;Pj; -

So the detailed balance equations hold, which implies that the MC is reversible.

Qb5e: Since the distribution m; = (1/M) solves the DBE, it must also solve the FBE. So the
stationary distribution of the MC is given by

1

So this implies that when the transition probabilities are symmetric, then the stationary distribution

of the MC is uniform over the states.
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ECE641 Fact Sheet

Probability Background 2D DSFT:

Total Probability _ _ e e . .

P(A) =¥, P(A|B,)P(B,) Sx(eln,el) = 37 3 R(mynjemfomien

Total Probability for Conditional Probabilities e

P(A|C) = 22, P(A[Bn, C)P(B,|C) Causal Gaussian Models

Bayes’ Rule A ;

P(B|A) = ZABEE) 02 = R[], X = HX, £ = (I - H)X = AX
P(A) E[EEY = A, A = diag{0?,03,...,0%}

Conditional Joint Probability
() = |det(A Azx), |det(A)| =1,
P(A,B|C) = P(A|B.C)P(B|C) B A e Az 1detA)

)

Maximum Likelihood (ML) Estimator 1-D Gaussian AR models:
(HequentISt) ® TOGplitZ Hi,j = hi_]‘
6= arg rgleaécpg(Y = arg reneaé( log pe(Y) e Circulant H; j = h(;—j)moan
0= Vopo(Y)ly_; o Pi" order TIR filter X,, = &, + .1, Xy _ihi,
. B Re(i—j) =E[&E] = 026,
) 70r) i~ J) = EIEE)] = 0%,
- . o Rx(n)*(6,—hn)*(6n—h_n) = Re(n) = 025,,
0 =Eg [9] o?
. i 5y X = =HwE
blaS.g =0-0 varg = Eg[(9 — 9) ]
MSE = Eg[(6 — 0)?] = vary + (biasg)? 2-D Gaussian AR:
For Y = AX + W, where X and W are independent o & =X, — %}V he Xs—r,
zero mean Gaussian distributed with Ry and Ry, r€e
respectively. Then the ML estimate is find by maxi- o Toeplitz block Toeplitz HyN4k,nN+1 = Pm—n, k-1

mizing log(py/.(y/x)):

g — (AtR‘jle)_lAtR‘jvly Non-causAal Gaussian Models

e o) = E[E2|X;,i # n], Bij = 0%_2(51-_]- = 9i,3),

Maximum A Posteriori (MAP) Estimator 02 = (Bnn)"Y, gni = 6n_i — 02 B, (homoge-
R neous: g; j = gi,jpf = 0'12VC)

X = arg max z|Y

MAP BUES Priy(2lY) e Gij=g;;, I =diag{o?, 03,..,0%},

= arg maxlog p, (2]Y) B=T"'I-G), T =diag(B)™!, G=1-TB,
e E[&0 Xpik] = 0200k

® Rx(n) * (0n — gn) * (0n — g-n) = Re(n) =
For Y = AX + W, where X and W are independent 03000 — gn), Sx = %7 Rx(n) * (0, —
zero mean Gaussian distributed with Rx and Ry,

respectively. Then the MAP or equivalently MMSE

= arggleig{— log py| (y]z) —log pa ()}

Gn) = U?Vcén

estimate is: e Relationship b/w AR and GMRF: 0%, =
Xurap = (A'Ryf A+ BT ARy y S
On—hn)*(6n—h_n
Gn = 6n _ 1+2):}£7 =~ )(: 1fp2 ((5774,1 +
Power Spectral Density Soin). P =1) n=1 "%
(zero-mean WSS Gaussian process) ’
1D DTFT: Surrogate Function
oo
i —jwn Our objective is to find a surrogate function p(A; A’)
S J — R J ’ ’
x(e) n;oo (n)e to the potential function p(A).
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Maximum Curvature Method

Assume the surrogate function of the form
p(A;A) = ar A + %(A — A)?
where a; = p/(A’) and @y = maxacr p”(A).

Symmetric Bound Method

Assume that potential function is bounded by sym-
metric and quadratic function of A, then the surro-
gate function is

Pl &) = A2
which results in the following symmetric bound sur-
rogate function:
AP AT A £ 0
A2 i A =0

p(A;A") = {

Review of Convexity in Optimization

Definition A.6. Closed, Bounded, and Com-
pact Sets

Let A C RY, then we say that A is:
e Closed if every convergent sequence in A has
its limit in A.
e Bounded if 3M such that Vo € A, ||z||< M.
e Compact if A is both closed and bounded.

Definition A.11. Closed Functions

We say that function f : RV — R U {oo} is closed
if for all @ € R, the sublevel set A, = {z € RV :
f(x) < a} is closed set.

Theorem A.6. Continuity of Proper, Closed,
Convex Functions

Let f : RY — R U {oo} be a proper convex func-
tion. Then f is closed if and only if it is lower semi-
continuous.

Optimization Methods:

Gradient Descent: x(Ft1) = (k) — 3V f(2(*)
Gradient Descent with Line Search:

d®) = —V f(z®)

a solves the equation : 0 = w = [Vf(z®+
ad®)]td®) .

[ ])2

- d®) where Q =

Update: D) «— 2k 4 oo
a3

A'AA + B
Coordinat;e Descent :

_ (y—Ax)’AA. s—a'B. s ~ 1
o= T4 T5+Be.c (for Y|X ~ N(AX,A™1))
y—Ax)' Ay s—AN@s—ErcosGs—rTr 2
7y 4y 4 AR Rsatenstn) J = 2
Pairwise quadratic form identity
'Br = ¥ asa?+3 ¥ 3 by ylrs—,|?, a5 = X By,
s€S seSres 7’ resS '
bs = _Bs,r
Miscellaneous
For any invertible matrix A, 1. % = |A|A7t 2.

9(BA) — B 3. tr(AB) = tr(BA)
Plug and Play

(non-expansive map)

(CE equations)
¥ = F(ax* —u")

¥ = H(z* 4+ u¥)

(Douglas-Rachford algorithm)

set p € (0,1)

initialize wq

repeatq{

w) « Tw;

wy < (1= p)wy + pwy

}

return wip

Note that here w1 = =z — u, wy = z + u, and
r = %2 5o then (2F — I)wy = wy. And,
T=(2H —I)2F —I).

(Convergence of Douglas-Rachford algorithm)
When F and H are proximal maps of proper
closed convex functions f and h then Douglas-
Rachford algorithm converges to both the CE
solution and the MAP estimate.

14



EM algorithm

General EM Algorithm:
E-step: Q(6;0%) = Ellog(p(y, X10))[Y = y,6")]
M-step : 0D = arg maxgeq Q(0; %))

(ML estimate for Gaussian mixture)

log p(y, 2/0) = SN log p(yn, 7|0) = S SM15(Ey

m){logp(yn|lu’ma Jm) + log Wm}

(Exponential Family)

A family of density functions py(y) for y and 6
is said to be a exponential family if there exists
functions 7(0), s(y), and d(#) and natural statis-
tic T'(y) such that pg(y) = exp{(n(0),T(y)) +
a(6) + s(y)}

(sufficient statistic)

T(Y) is a sufficient statistic for the family of dis-
tributions py(y) if the density functions can be
written in the form py(y) = h(y)g(T(y),0) where

g and h are any two functions.

Markov Chains

Parameter Estimation for Markov Chains: N; =

¥y, = arg maxjeqilog Py, -1 j+1log f(ynlj)+L(j,n)}
State Probability and the Forward-Backward Al-
gorithm:

an(j) = p(xn = ja y’my<n) ﬂn(ﬂ) = p(y>n|xn =
7)

(1 = i, 3y = jly) = 22100 1))

p(y)
an(f) = 2ieq n-1(0) P f(ynld)

B’ﬂ(z) = Zjeﬂ B,jf(yn—l-l’j)/@n—i-l(j)
(Irreducible Markov Chain).

discrete-space homogeneous Markov chain is said

A discrete-time,

to be irreducible if for all states 7,5 € Q , ¢ and

J communicate.

(Communicating States). States i,7 € Q of a
discrete-time, discrete-space homogeneous Markov
chain are said to communicate if there exists in-
tegers m > 0 and n > 0 such that [P™];; > 0
and [P"];; > 0.

(period of state) State i € Q of a discrete-time,
discrete-space homogeneous Markov chain has
period d(i) = ged{n € NL|[P"];; > 0}.

State ¢ is aperiodic if d(i) = 1 and periodic if
d(i) > 1.

log(p(x)) = >_jcq{N;log(mj)+> icq Ki,j log(Pi ;) YErgodic MC @ mj = limy 00 [P"]; j > 0

0(Xo —j), Kij = B30 10(Xp — §)0(Xp-1 — i)
. A 3 Kij
ML Estimate 7; = N; and P, ; = Z]T]Ku

Marginal density at any time n: 7 = 7(0)pn
and 7() = 7(0) poe

Log likelihood of HMM (MAP Estimate):

& = argmax,eqn {log 7z, + Z,jy:l{log f(ynlzn) +
log Pr,, 1z, }}

State Sequence Estimation and Dynamic Pro-
gramming:

L(j,n) = max,.,{logp(ysn,T>n|zn = j)} and
L(j,N)=0

L(i,n—1) = max;co{log f(yn|j)+log P; j+L(j,n)}

To = argmax;eo{log7; + L(4,0)}

(detailed balance equations)
TP =1y

Diicomi =1

(full balance equations)

T =7®Porwj =) . .qmibF;;

Yieq i =1
Stochastic Sampling

(inverse transform sampling)

X + F~1(U) where U + Rand([0,1]) and F~(u) =

inf{z|F(z) > u} generates a sample from ran-
dom variable X with CDF F(z) = P{X < x}
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(Metropolis algorithm)
initialize X

for k from 0 to K — 1{

U + Rand([0,1])

W e QL (UX W)

a <+ min{1, e_[“(W)_“(X(k))]}
U < Rand([0,1])

if U < a then X*+D) « W
else XD  x (k)

}
Note: where Q71 (-|z(®)) is the inverse CDF cor-
responding to proposal density q(w|x(k))
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