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Name/PUID: Key
Problem 1.(25pt) Maximum Likelihood Estimate

Let Yn for n = 0, . . . , N → 1 be i.i.d. random variables with distribution N(µ,ω2) and define

ε = (µ,ω2).

1a) Derive the expression for the negative log likelihood, l(ε) = → logω p(y).

1b) What are the natural su!cient statistics, T (y), for this family of distributions?

1c) Find an expression for

µ̂ = argmin
µ

l((µ,ω2)) ,

and show that the arg min does not depend on ω
2.

1d) Find an expression for l→(ω) = minµ l((µ,ω2)).

1e) Use the result of part c) above to solve for the maximum likelihood estimate of ε.

(µ̂, ω̂) = arg min
(µ,ε)

l((µ,ω)) .
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Solution:

Q1a:

p(y) =
N↑1∏

n=0

1↑
2ϑω2

exp

{
→ 1

2ω2
(yn → µ)2

}

l(ε) =
N↑1∑

n=0

{
1

2ω2
(yn → µ)2 +

1

2
log

(
2ϑω2

)}

Q1b: The natural su!cient statistics are

b =
N↑1∑

n=0

yn

S =
N↑1∑

n=0

y
2
n

Q1c: The minimum of l(µ,ω2) is the solution to

0 =
dl(µ,ω2)

dµ
=

N↑1∑

n=0

1

ω2
(µ→ yn)

0 =
dl(µ,ω2)

dµ
=

N↑1∑

n=0

(µ→ yn) .

which implies that

N↑1∑

n=0

µ̂ =
N↑1∑

n=0

yn

Nµ̂ =
N↑1∑

n=0

yn

µ̂ =
1

N

N↑1∑

n=0

yn ,

which is not a function of ω2.
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Q1d:

l(µ̂,ω2) =
N↑1∑

n=0

{
1

2ω2
(yn → µ̂)2 +

1

2
log

(
2ϑω2

)}

=
1

2ω2

N↑1∑

n=0

(yn → µ̂)2 +N
1

2
log

(
2ϑω2

)

=
1

2ω2

{
N↑1∑

n=0

y
2
n →

N↑1∑

n=0

µ̂
2

}
+N

1

2
log

(
2ϑω2

)

=
1

2ω2

{
S →

N↑1∑

n=0

(
b

N

)2
}

+
N

2
log

(
2ϑω2

)

=
N

2ω2

{
S

N
→
(

b

N

)2
}

+
N

2
log

(
2ϑω2

)

Q1e: The minimum of l(µ̂, ϖ) for ω2 = ϖ is the solution to

0 =
dl(µ̂, ϖ)

dϖ

=
→N

2ϖ2

{
S

N
→
(

b

N

)2
}

+
N

2

1

ϖ

which implies that

1

2ϖ2

{
S

N
→
(

b

N

)2
}

=
1

2

1

ϖ

{
S

N
→
(

b

N

)2
}

= ϖ

So we have that

ω̂
2 =

S

N
→
(

b

N

)2

µ̂ =
b

N
.
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Name/PUID:

Problem 2.(15pt) Maximum Likelihood Estimate

Let Zn for n = 0, . . . , N → 1 be i.i.d. random variables with distribution P{Zn = m} = ϑm for

m = {0, . . . ,M → 1} and define ε = (ϑ0, . . . ,ϑM↑1).

2a) Derive the expression for the negative log likelihood, l(ε) = → logω p(z).

2b) What are the natural su!cient statistics, T (z), for this family of distributions?

2c) Find an expression for ϑ̂ = argminϑ l(ϑ).
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Solution:

Q2a:

l(ε) = → log
M↑1∏

n=0

ϑ
Nm
m

=
M↑1∑

n=0

→Nm log ϑm ,

where

Nm =
N↑1∑

n=0

ϱ(Zn →m) .

Q2b: The natural su!cient statistics are given by

Nm =
N↑1∑

n=0

ϱ(Zn →m) ,

for m = 0, . . . ,M → 1.

Q2c:

ϑ̂m =
Nm

N
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Name/PUID:

Problem 3.(30pt) Proximal Maps and PnP

Let

Y = AX + ωW ,

where A ↓ RM↓N , X ↓ RN , W ↔ N(0, I), and X ↔ p(x).

Furthermore, let

Z = X + ςW̃ ,

where W̃ ↔ N(0, I). Then the minimum measure squared error (MMSE) denoiser is given by

Hϖ(Z) = E[X|Z] .

3a) Show that for the special case when X ↔ p(x) is Gaussian, then the MMSE estimate of X

given Z is the same as the MAP estimate of X given Z.

3b) Derive an expression for the function Hϖ(·) as the MAP estimate.

3c) Derive an expression for the function f(x) = → log p(y|x).

3d) Write out an explicit expression for the proximal map

F (v) = argmin
x

{
f(x) +

1

2ς2
↗x→ v↗2

}
.

3e) Let Ĥ be a learned approximation to Hϖ. Describe how Ĥ can be designed using training data.

3f) Specify the Plug-and-Play (PnP) algorithm in terms of forward model proximal map, F , and

the denoiser Ĥ.
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Solution:

Q3a: Since X and Z are jointly Gaussian, the conditional distribution of X given Z must also be

Gaussian. Since a Gaussian distribution is unimodal with a symmetric distribution, then we have

that the mode must equal the mean. In other words,

argmax
z

p(x|z) =
∫

xp(x|z)dx .

Q3b:

Hϖ(z) = argmin
x

{
1

2ς2
↗z → x↗2 → log p(x)

}

Q3c:

f(x) =
1

2ω2
↗y →Ax↗2 +N log(2ϑω2)

Q3d:

F (v) = argmin
x

{
1

2ω2
↗y →Ax↗2 + 1

2ς2
↗x→ v↗2

}

Q3e: Generate training pairs, (Xk, Zk) with Zk = Xk + ςW with W ↔ N(0, I). Then form a loss

function

L(ε) =
∑

k

↗Xk →Hω(Zk)↗2 .

Then use an optimization algorithm to compute

ε̂ = argmin
ω

L(ε) .

Then the trained estimator is given by Hω̂.

Q3f:

v ↘ 0

u ↘ 0

repeat {

x ↘ F (v → u)

v ↘ Ĥ(x+ u)

u ↘ u+ (x→ v)

}
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Name/PUID:

Problem 4.(25pt) EM Algorithm for Poisson Observations

LetXn for n = 1, · · · , N be a series of i.i.d. multinomial random variables with distribution P{Xn =

m} = ϑm, and let

P{Yn = k|Xn = m} =
e
↑ϱmφ

k
m

k!
,

be conditionally independent random variables givenXn = m, and let ε = {ϑ0,φ0, · · · ,ϑM↑1,φM↑1}
parameterize the joint distribution.

Problem 4a) Calculate ϑ̂m, the maximum likelihood estimate of ϑm given {Xn, Yn}Nn=1.

Problem 4b) Calculate φ̂m, the maximum likelihood estimate of φm given {Xn, Yn}Nn=1.

Problem 4c) Use Bayes’ rule to calculate an expression for f(m|yn) = P{Xn = m|Yn = yn}.

Problem 4d) Specify the E-step of the EM algorithm for the estimation of ε for this specific

problem.

Problem 4e) Specify the M-step of the EM algorithm for the estimation of ε for this specific

problem.
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Solution:

Q4a: First compute

Nm ↘
N∑

n=1

ϱ(Xn = m)

Then compute

ϑ̂m ↘ Nm

N
.

Q4b: First compute

bm ↘
N∑

n=1

Ynϱ(Xn = m)

Nm ↘
N∑

n=1

ϱ(Xn = m) .

Then compute

φ̂m ↘ bm

Nm
.

Q4c:

f(m|yn) = P{Xn = m|Yn = yn}

=
1

Z

e
↑ϱmφ

yn
m

yn!
ϑm ,

where

Z =
M↑1∑

m=0

e
↑ϱmφ

yn
m

yn!
ϑm .

Q4d: The E-step is given by computing the conditional expectation of the su!cient statistics.

N̄m ↘
N∑

n=1

f(m|yn)

b̄m ↘
N∑

n=1

Ynf(m|yn) .

Q4e: The M-step is given by updating the parameters.

ϑ̂m ↘ N̄m

N

φ̂m ↘ b̄m

N̄m
.
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Name/PUID:

Problem 5.(25pt) Markov Chains

Let Xn ↓ {0, . . . ,M → 1} be an irreducible Markov chain with transition probabilities P ↓ ≃M↓M .

Furthermore, assume that ⇐i, 1 > Pi,i > 0, and P = P
t.

Problem 5a) Is Xn a homogeneous Markov chain? Prove your answer.

Problem 5b) Is Xn an aperiodic Markov chain? Prove your answer.

Problem 5c) Is Xn an ergodic Markov chain? Prove your answer.

Problem 5d) Is Xn a reversible Markov chain? Prove your answer.

Problem 5e) What is the stationary distribution of the Markov chain? Prove your answer.
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Solution:

Q5a: Yes. This is true because the parameters of the MC are not a function of time.

Q5b: Yes. Since Pi,i > 0, each state must have the same period of 1.

Q5c: Since MC is irreducible, aperiodic, and has a finite number of states, it must be ergodic.

Q5d: The MC is reversible if and only if it solves the detailed balance equations.

Let ϑm = 1/M for all states m ↓ {0, . . . ,M → 1}. Then we have that

ϑiPi,j = (1/M)Pi,j

= (1/M)Pj,i

= ϑjPj,i .

So the detailed balance equations hold, which implies that the MC is reversible.

Q5e: Since the distribution ϑi = (1/M) solves the DBE, it must also solve the FBE. So the

stationary distribution of the MC is given by

pii =
1

M
.

So this implies that when the transition probabilities are symmetric, then the stationary distribution

of the MC is uniform over the states.
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ECE641 Fact Sheet

Probability Background

Total Probability
P (A) =

∑
n
P (A|Bn)P (Bn)

Total Probability for Conditional Probabilities
P (A|C) =

∑
n
P (A|Bn, C)P (Bn|C)

Bayes’ Rule
P (B|A) = P (A|B)P (B)

P (A)

Conditional Joint Probability
P (A,B|C) = P (A|B,C)P (B|C)

Maximum Likelihood (ML) Estimator

(Frequentist)

ε̂ = argmax
ω→!

pω(Y ) = argmax
ω→!

log pω(Y )

0 = ⇒ωpω(Y )|
ω=ω̂

ε̂ = T (Y )

ε̄ = Eω[ε̂]

biasω = ε̄ → ε varω = Eω[(ε̂ → ε̄)2]

MSE = Eω[(ε̂ → ε)2] = varω + (biasω)
2

For Y = AX +W , where X and W are independent
zero mean Gaussian distributed with RX and RW ,
respectively. Then the ML estimate is find by maxi-
mizing log(py/x(y/x)):

X̂ML = (At
R

↑1
W

A)↑1
A

t
R

↑1
W

y

Maximum A Posteriori (MAP) Estimator

X̂MAP = argmax
x→!

px|y(x|Y )

= argmax
x→!

log px|y(x|Y )

= argmin
x→!

{→ log py|x(y|x)→ log px(x)}

For Y = AX +W , where X and W are independent
zero mean Gaussian distributed with RX and RW ,
respectively. Then the MAP or equivalently MMSE
estimate is:

X̂MAP = (At
R

↑1
W

A+R
↑1
X

)↑1
A

t
R

↑1
W

y

Power Spectral Density

(zero-mean WSS Gaussian process)

1D DTFT:

SX(ejε) =
↓∑

n=↑↓
R(n)e↑jεn

2D DSFT:

SX(ejε1 , e
jε2) =

↓∑

m=↑↓

↓∑

n=↑↓
R(m,n)e↑jε1m↑jε2n

Causal Gaussian Models

ω
2
n

”
= E[E2

n
], X̂ = HX, E = (I → H)X = AX,

E[EE t] = ”, ” = diag{ω2
1 ,ω

2
2 , ...,ω

2
N
}

px(x) = |det(A)|pE(Ax), |det(A)| = 1,
RX = (At”↑1

A)↑1

1-D Gaussian AR models:

• Toeplitz Hi,j = hi↑j

• Circulant Hi,j = h(i↑j)modN

• P
th order IIR filter Xn = En +

∑
P

i=1 Xn↑ihi,
RE(i→ j) = E[EiEj ] = ω

2
c
ϱi↑j

• RX(n)⇑(ϱn→hn)⇑(ϱn→h↑n) = RE(n) = ω
2
c
ϱn,

SX = ϑ
2
c

|1↑H(ε)|2

2-D Gaussian AR:

• Es = Xs → #
r→Wp

hrXs↑r,

• Toeplitz block ToeplitzHmN+k,nN+l = hm↑n,k↑l

Non-causal Gaussian Models

• ω
2
n

”
= E[E2

n
|Xi, i ⇓= n], Bi,j = 1

ϑ
2
i
(ϱi↑j → gi,j),

ω
2
n
= (Bn,n)↑1, gn,i = ϱn↑i → ω

2
n
Bn,i (homoge-

neous: gi,j = gi↑j ,ω2
i
= ω

2
NC

)

• Gi,j = gi,j , $ = diag{ω2
1 ,ω

2
2 , ...,ω

2
N
},

B = $↑1(I →G), $ = diag(B)↑1, G = I → $B,
E[EnXn+k] = ω

2
NC

ϱk

• RX(n) ⇑ (ϱn → gn) ⇑ (ϱn → g↑n) = RE(n) =

ω
2
NC

(ϱn → gn), SX = ϑ
2
NC

1↑G(ε) , RX(n) ⇑ (ϱn →
gn) = ω

2
NC

ϱn

• Relationship b/w AR and GMRF: ω
2
NC

=
ϑ
2
c

1+
∑P

n=1 h2
n
,

gn = ϱn → (ϖn↑hn)↔(ϖn↑h→n)
1+

∑P
n=1 h2

n
(= ϱ

1+ϱ2 (ϱn↑1 +

ϱn+1), P = 1)

Surrogate Function

Our objective is to find a surrogate function ς(%;%↗),
to the potential function ς(%).
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Maximum Curvature Method

Assume the surrogate function of the form

ς(%;%↗) = ↼1%+
↼2

2
(%→%↗)2

where ↼1 = ς
↗(%↗) and ↼2 = max”→R ς

↗↗(%).

Symmetric Bound Method

Assume that potential function is bounded by sym-
metric and quadratic function of %, then the surro-
gate function is

ς(%;%↗) =
↼2

2
%2

which results in the following symmetric bound sur-
rogate function:

ς(%;%↗) =

{
ϱ
↑(”↑)
2”↑ %2 if %↗ ⇓= 0
ϱ
↑↑(0)
2 %2 if %↗ = 0

Review of Convexity in Optimization

Definition A.6. Closed, Bounded, and Com-
pact Sets

Let A ⇔ RN , then we say that A is:

• Closed if every convergent sequence in A has
its limit in A.

• Bounded if ↖M such that ⇐x ↓ A, ↗x↗< M .

• Compact if A is both closed and bounded.

Definition A.11. Closed Functions

We say that function f : RN ↙ R ∝ {′} is closed

if for all ↼ ↓ R, the sublevel set Aς = {x ↓ RN :
f(x) ∞ ↼} is closed set.

Theorem A.6. Continuity of Proper, Closed,
Convex Functions

Let f : RN ↙ R ∝ {′} be a proper convex func-
tion. Then f is closed if and only if it is lower semi-
continuous.

Optimization Methods:

Gradient Descent: x
(k+1) = x

(k) → ↽⇒f(x(k))
Gradient Descent with Line Search:

d
(k) = →⇒f(x(k))

↼ solves the equation : 0 = φf(x(k)+ςd
(k))

φς
= [⇒f(x(k)+

↼d
(k))]td(k).

Update: x
(k+1) ↘ x

k + ↼
↘d(k)↘2

↘d(k)↘2
Q
d
(k) where Q =

A
t”A+B

Coordinate Descent :

↼ = (y↑Ax)t#A↓,s↑x
t
B↓,s

↘A↓,s↘2
!+Bs,s

(for Y |X ↔ N(AX,”↑1))

xs ↘ xs +
(y↑Ax)tA↓,s↑↼(xs↑$r↔ωsgs→rxr)

↘A↓,s↘2+↼
, φ = ϑ

2

ϑ2
x

Pairwise quadratic form identity

x
t
Bx = #

s→S

asx
2
s
+ 1

2 #
s→S

#
r→S

bs,r|xs→xr|2, as = #
r→S

Bs,r,

bs = →Bs,r

Miscellaneous

For any invertible matrix A, 1. φ|A|
φA

= |A|A↑1 2.
φtr(BA)

φA
= B 3. tr(AB) = tr(BA)

Plug and Play

(non-expansive map)

(CE equations)

x
→ = F (x→ → u

→)

x
→ = H(x→ + u

→)

(Douglas-Rachford algorithm)

set ς ↓ (0, 1)

initialize w1

repeat{
w

↔
1 ↘ Tw1

w1 ↘ (1→ ς)w↔
1 + ςw1

}
return w1

Note that here w1 = x → u, w2 = x + u, and

x = w1+w2
2 , so then (2F → I)w1 = w2. And,

T = (2H → I)(2F → I).

(Convergence of Douglas-Rachford algorithm)

When F and H are proximal maps of proper

closed convex functions f and h then Douglas-

Rachford algorithm converges to both the CE

solution and the MAP estimate.
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EM algorithm

General EM Algorithm:

E-step : Q(ε; ε(k)) = E[log(p(y,X|ε))|Y = y, ε
(k)]

M-step : ε(k+1) = argmaxω↗!Q(ε; ε(k))

(ML estimate for Gaussian mixture)

log p(y, x|ε) = #N
n=1 log p(yn, xn|ε) = #N

n=1#
M↑1
m=0 ϱ(xn→

m){log p(yn|µm,ωm) + log ϑm}

(Exponential Family)

A family of density functions pω(y) for y and ε

is said to be a exponential family if there exists

functions ⇀(ε), s(y), and d(ε) and natural statis-

tic T (y) such that pω(y) = exp{∈⇀(ε), T (y)∋ +
d(ε) + s(y)}

(su!cient statistic)

T (Y ) is a su!cient statistic for the family of dis-

tributions pω(y) if the density functions can be

written in the form pω(y) = h(y)g(T (y), ε) where

g and h are any two functions.

Markov Chains

Parameter Estimation for Markov Chains: Nj =

ϱ(X0 → j), Ki,j = #N
n=1ϱ(Xn → j)ϱ(Xn↑1 → i)

log(p(x)) =
∑

j↗!{Nj log(⇁j)+
∑

i↗!Ki,j log(Pi,j)}
ML Estimate ⇁̂j = Nj and P̂i,j =

Ki,j∑
j→! Ki,j

Marginal density at any time n: ϑ
(n) = ϑ

(0)
P

n

and ϑ
(↘) = ϑ

(0)
P

↘

Log likelihood of HMM (MAP Estimate):

x̂ = argmaxx↗!N {log ⇁x0 + #N
n=1{log f(yn|xn) +

logPxn↑1,xn}}
State Sequence Estimation and Dynamic Pro-

gramming:

L(j, n) = maxx>n{log p(y>n, x>n|xn = j)} and

L(j,N) = 0

L(i, n→1) = maxj↗!{log f(yn|j)+logPi,j+L(j, n)}
x̂0 = argmaxj↗!{log ⇁j + L(j, 0)}

x̂n = argmaxj↗!{logPx̂n↑1,j+log f(yn|j)+L(j, n)}
State Probability and the Forward-Backward Al-

gorithm:

↼n(j) = p(xn = j, yn, y<n) ↽n(j) = p(y>n|xn =

j)

p(xn↑1 = i, xn = j|y) = ςn↑1(i)Pi,jf(yn|j)φn(j)
p(y)

↼n(j) =
∑

i↗! ↼n↑1(i)Pi,jf(yn|j)
↽n(i) =

∑
j↗! Pi,jf(yn+1|j)↽n+1(j)

(Irreducible Markov Chain). A discrete-time,

discrete-space homogeneous Markov chain is said

to be irreducible if for all states i, j ↓ & , i and

j communicate.

(Communicating States). States i, j ↓ & of a

discrete-time, discrete-space homogeneous Markov

chain are said to communicate if there exists in-

tegers m > 0 and n > 0 such that [Pm]i,j > 0

and [Pn]j,i > 0.

(period of state) State i ↓ & of a discrete-time,

discrete-space homogeneous Markov chain has

period d(i) = gcd{n ↓ N+|[Pn]i,i > 0}.
State i is aperiodic if d(i) = 1 and periodic if

d(i) > 1.

Ergodic MC : ϑj = limn≃↘[Pn]i,j > 0

(detailed balance equations)

ϑiPi,j = ϑjPj,i
∑

i↗! ϑi = 1

(full balance equations)

ϑ
↘ = ϑ

↘
P or ϑj =

∑
i↗! ϑiPi,j

∑
i↗! ϑi = 1

Stochastic Sampling

(inverse transform sampling)

X ↘ F
↑1(U) where U ↘ Rand([0, 1]) and F

↑1(u) =

inf{x|F (x) △ u} generates a sample from ran-

dom variable X with CDF F (x) = P{X ∞ x}
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(Metropolis algorithm)

initialize X
0

for k from 0 to K → 1{
U ↘ Rand([0, 1])

W ↘ Q
↑1(U |X(k))

↼ ↘ min{1, e↑[u(W )↑u(X(k))]}
U ↘ Rand([0, 1])

if U < ↼ then X
(k+1) ↘ W

else X
(k+1) ↘ X

(k)

}

Note: where Q
↑1(·|x(k)) is the inverse CDF cor-

responding to proposal density q(w|x(k))
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