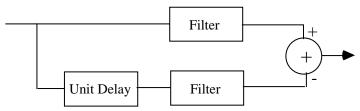
EE 438 Digital Signal Processing with Applications Homework #2 due 1/29/99

1. Consider a DT LTI system described by the following equation

$$y(n) = x(n) + 2x(n-1) + 0.5y(n-1)$$
.

- Compute the impulse response h(n) of the system. a.
- Compute the output when x(n) = u(n). b.
- Compute the output when $x(n) = 0.25^n u(n)$. c.
- 2. For each of the following C-T signals, compute the CTFT and manually plot the magnitude of the result.
 - a) $e^{-t}u(t)$


 - c) $rect(t)e^{j6\pi t}$
 - d) $\operatorname{sinc}(t) \cos(2\pi f_0 t)$
 - e) $\cos(2\pi t) \operatorname{rect}(t)$
- 3. For each of the following D-T signals,
 - i. Compute the DTFT $X(\omega)$. Simplify your answer as much as possible.
 - ii. Sketch the magnitude and phase of $X(\omega)$.
 - a) u(n+N)-u(n-N-1)
 - b) $2^{n}u(-n)$
 - c) $a^n \sin(\omega_a n) u(n) | a | < 1, | \omega_a | < \pi$
 - d) $\cos(18\pi n/7)$
 - $\sin(\pi n/8)$
- Let x(n) and y(n) be D-T signals with DTFT's $X(e^{j\omega})$ and $Y(e^{j\omega})$ respectively. 4. Use the formulas for the DTFT and its inverse to compute the DTFT's of the following signals.
 - a) $x(n-N)e^{j\omega_0 n}$
 - b) $x^*(-n)$
 - c) x(n)y(n)
 - d) $x(n)^2$

5. Consider the filter described by the difference equation

$$y[n] = \frac{1}{4} \{ x[n] - 2x[n-1] + x[n-2] \}$$

- a. Find a simple expression for the frequency response $H(\omega)$
- b. Find a simple expression for the magnitude response $|H(\omega)|$
- c. Sketch $|H(\omega)|$
- d. Find a simple expression for the phase response $\arg\{H(\omega)\}\$
- e. Sketch $arg\{H(\omega)\}$
- 6. For the LTI systems below,
 - i. find the impulse response,
 - ii. find an expression for the frequency response (simplify as much as possible),
 - iii. sketch the magnitude and phase of the frequency response,
 - iv. describe in general terms the effect that the filter has on a signal.
 - a. y[n] = (x[n] + x[n-1])/2
 - b. y[n] = (x[n] y[n-3])/2
 - c. y[n] = (x[n] 2x[n-1] + x[n-2])/4

7. Consider the system shown below where the filter is described by the difference equation y[n] = (x[n] + x[n-1])/2:

- a. Find a difference equation that describes the overall system.
- b. Find an expression for the frequency response $H(\omega)$ of the overall system in terms of $H_0(\omega)$, the frequency response of the filter.
- c. Find the actual frequency response $H(\omega)$ from your answer to part a. and also using your answer to part b. Verify that the two approaches lead to the same answer.