EE 438 DIGITAL SIGNAL PROCESSING WITH APPLICATIONS Final Exam – Tuesday, May 4, 1999

- You have 110 minutes to complete the following SIX problems.
- It is to your advantage to budget your time so that you can try every problem.
- The examination is closed-book, closed-notes and open mind.
- You must show all work to obtain full credit.
- No calculators are allowed.

Good Luck!

Some useful formulas:

1-D Transforms

$$\operatorname{rect}(t) \overset{CTFT}{\Leftrightarrow} \operatorname{sinc}(f)$$

$$\operatorname{sinc}(t) &\Leftrightarrow \operatorname{rect}(f)$$

$$e^{-\pi t^2} \overset{CTFT}{\Leftrightarrow} e^{-\pi f^2}$$

$$x(t/T) &\Leftrightarrow |T|X(fT)$$

$$x(t-d) &\Leftrightarrow X(f)e^{-j2\pi f d}$$

$$x(t)e^{j2\pi f_o} &\Leftrightarrow X(f-f_o)$$

Sampling
$$Y(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(\frac{\omega - 2\pi k}{2\pi T}\right)$$

$$S(f) = Y(e^{j2\pi fT})$$

Interpolation and Decimation

$$Z(e^{j\omega}) = Y(e^{jL\omega})$$

$$Z(e^{j\omega}) = \frac{1}{L} \sum_{k=0}^{L-1} Y(e^{j(\omega - 2\pi k)/L})$$

2-D Transforms

$$rect(x, y) \stackrel{CSFT}{\Leftrightarrow} sinc(u, v)$$

$$circ(x, y) \stackrel{CSFT}{\Leftrightarrow} jinc(u, v)$$

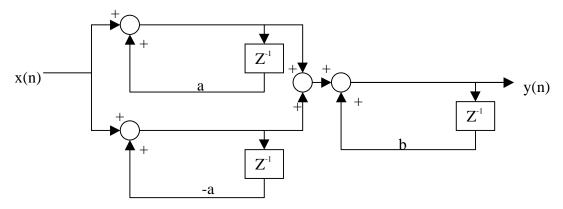
$$circ(x, y) = \begin{cases} 1 & \text{if } \sqrt{x^2 + y^2} < 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Z-Transforms

$$a^{n}u(n) \Leftrightarrow \frac{1}{1 - az^{-1}} \quad ROC = |z| > a$$
$$-a^{n}u(-1 - n) \Leftrightarrow \frac{1}{1 - az^{-1}} \quad ROC = |z| < a$$

Problem 1. (33 points)

Consider the following discrete time system.



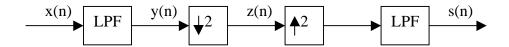
- a) Calculate the transfer function H(z) for the following system.
- b) Calculate the difference equation for the system.
- c) Calculate the poles of the system.
- d) Assuming that the system is causal, when is the difference equation stable?

Name:	
-------	--

Name: _	
---------	--

Problem 2. (33 points)

Consider the following discrete time system where x(n) = sinc(n/4) and the low pass filters have a cut-off frequency of $\pi/2$ and a gain of 1.



- a) Calculate $X(e^{j\omega})$.
- b) Calculate y(n) and $Y(e^{j\omega})$.
- c) Calculate z(n) and $Z(e^{j\omega})$.
- d) Calculate s(n) and $S(e^{j\omega})$.

Name:	
-------	--

Name: _____

Problem 3. (33 points)

Compute the 8-point DFT of the following signals.

a)
$$x(n) = \begin{cases} 1 & \text{for } 0 \le n \le 2 \\ 0 & \text{for } 3 \le n \le 7 \end{cases}$$

b)
$$y(n) = e^{j2\pi n/4}$$
 for $0 \le n \le 7$

a)
$$x(n) = \begin{cases} 1 & \text{for } 0 \le n \le 2 \\ 0 & \text{for } 3 \le n \le 7 \end{cases}$$

b) $y(n) = e^{j2\pi n/4} \text{ for } 0 \le n \le 7$
c) $z(n) = \sum_{l=0}^{7} x(l) e^{j2\pi(n-l)/4}$

Name:	
-------	--

Problem 4. (33 points)

Let the 1-D discrete time function h(n) have the DTFT $H(e^{j\omega}) = rect(\omega/\pi)$ for $|\omega| < \pi$, and let the 2-D discrete time function f(m,n) have the DSFT

$$F(e^{j\mu}, e^{j\nu}) = rect(\mu/\pi, \nu/\pi) - rect(2\mu/\pi, 2\nu/\pi)$$
 for $|\mu| < \pi$ and $|\nu| < \pi$.

- a) Calculate h(n).
- b) Is f(m,n) a separable function? Justify your answer.
- c) Calculate f(m,n).
- d) Calculate $\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m,n)$.

Name:	·
-------	---

Name:

Problem 5. (34 points)

Let $h(m,n) = (0.9)^{m+n} u(m) u(n)$.

- a) Calculate the 2-D Z-transform $H(z_1, z_2)$.
- b) Calculate and sketch $\left|H(e^{j\mu},e^{j\nu})\right|$ the magnitude of the 2-D DSFT for $|\mu|<\pi$ and $|\nu|<\pi$.
- c) Write a difference equation for the system with impulse response h(m,n).

Name:	
-------	--

Name:

Problem 6. (34 points)

Consider the function f(x, y) = rect(x/2, y) + rect(x, y/2).

- a) Sketch the function f(x, y).
- b) Let $g_{\theta}(t)$ be the projections of f(x, y). Calculate $g_{\theta}(t)$ for $\theta = 0$.
- c) Consider the shifted function f(x-10, y-10). Calculate the $p_{\theta}(t)$, the projections of f(x-10, y-10), in terms of the function $g_{\theta}(t)$.

(Assume that you know $g_{\theta}(t)$ for all θ and t).

Name:	
-------	--