EE 438 Digital Signal Processing with Applications Homework #3 due 9/15/95

- 1. Let y(n) be a D-T signal formed by sampling the C-T signal x(t) so that y(n) = x(nT). For each case do the following:
 - i) calculate an analytical expression for $Y(e^{j\omega})$
 - ii) use Matlab to plot y(n)
 - iii) use Matlab to plot the magnitude and phase of $Y(e^{j\omega})$ for $\omega \in [-\pi, \pi]$.
 - a) $x(t) = (\text{sinc}(t))^2$, T = 1
 - b) $x(t) = (\operatorname{sinc}(t-1/4))^2$, T = 1
 - c) $x(t) = (\operatorname{sinc}(t))^2$, T = 1/2
 - d) $x(t) = (\operatorname{sinc}(t))^2$, T = 3/2
 - e) $x(t) = \cos(2\pi t) \operatorname{rect}(t / (8\pi)), T = 1 / 8$
 - f) $x(t) = \cos(2\pi t) \operatorname{rect}(t / (8\pi)), T = 9 / 8$
 - g) $x(t) = \cos(2\pi t) \operatorname{rect}(t / (8\pi)), T = 17 / 8$
- 2. The analog signal $x(t) = \cos(2\pi f_0 t)$ is sampled with an ideal sampler at a rate of 8 kHz, filtered with a digital filter having the impulse response

$$h(n) = (\delta(n) + \delta(n-1))/2,$$

and then reconstructed as an analog signal y(t) with an impulse generator followed by an ideal low pass filter with a cutoff frequency of 4 kHz.

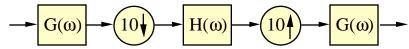
Find the output y(t) for the following values of f_0 .

- a. 1 kHz,
- b. 4 kHz,
- c. 5 kHz.
- 3. Consider the digital filter described by the following difference equation

$$y[n] = (x[n] + x[n-1] + x[n-2]) / 3$$

- a. Find a simple expression for the frequency response $H(\omega)$ of this filter.
- b. Sketch the magnitude of $H(\omega)$.

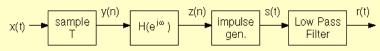
Now consider the following digital system,



where $H(\omega)$ is the filter from parts a and b and $G(\omega)$ is an ideal low-pass filter with a cutoff frequency of $\pi/10$ rad/sample and unity gain in the passband.

c. Find the overall frequency frequency response $F(\omega)$ for this system.

- d. Sketch the magnitude of $F(\omega)$.
- e. Discuss the possible advantages of a system like that shown above compared to directly implementing a digital filter with frequency response $F(\omega)$ as a single stage.
- 4. The diagram below shows a digital signal processing system.



Assume that the signal x(t) is band limited to half the sampling frequency $f_s = 1/T$. Also assume that the low pass filter is ideal with cut off frequency $f_s/2$.

- a) Compute $Z(e^{j\omega})$ in terms of X(f) and $H(e^{j\omega})$.
- b) Compute R(f) in terms of X(f) and $H(e^{j\omega})$.
- c) Compute the impulse response of the digital filter h(n) so that the complete system produces a delay of T/2.
- d) Is the complete system linear? Is it time invariant? Explain your answer.
- 5. The following system processes a digital signal by converting it to a continuous time signal, filtering it, and converting it back to discrete time. The sampling rate is $T = 1/f_s$, and the filter H(f) is band limited to $|f| < f_s/2$.

$$x(n)$$
 impulse gen. $x(t)$ $y(n)$ $x(t)$ $y(n)$

Compute expressions for each of the following in terms of $X(e^{j\omega})$ and H(f).

- a) S(f)
- b) Z(f)
- c) $Y(e^{j\omega})$
- d) You are told that the input/output behavior of the system should be

$$\frac{Y(e^{j\omega})}{X(e^{j\omega})} = G(e^{j\omega})$$
. Choose $H(f)$ in terms of $G(e^{j\omega})$ to achieve this behavior.

6. A real A/D converter does not sample at a single instant. Instead, it averages over a small window. Mathematically, the sampled value y(n) of an analog signal x(t) is given by

$$y(n) = \int_{-\infty}^{\infty} \omega(t)x(t+nT)dt$$

where $\omega(t)$ is a small window. Assume that X(f) is band limited to |f| < 1/(2T).

- a) Show that y(n) = v(nT) where $v(t) = \omega(-t) * x(t)$.
- b) Calculate $Y(e^{j\omega})$ in terms of W(f) and X(f).
- c) Find a digital filter $H(e^{j\omega})$ which will correct the distortion of the averaging window. (Hint: $H(e^{j\omega})Y(e^{j\omega})$ should be the DTFT of the ideal sampled signal x(nT).)