## **Key Elements of an Image Encoder**



### **Entropy Encoding**

- Convert stream of prototype vectors to a stream of binary codewords
- Objective is to minimize average number of binary digits per prototype vector
- Shannon showed that theoretical minimum is given by source entropy
- Process is generally lossless

## **Entropy Encoding (cont.)**

- Source alphabet (prototype vectors)  $a_1,...,a_M$
- Source probability distribution  $p_1, ..., p_M$
- Source entropy

$$H = -\sum_{m=1}^{M} p_m \log_2(p_m) \text{ bits / source symbol}$$

- Codeword lengths  $l_1,...,l_M$
- Average codeword length

$$\bar{l} = \sum_{m=1}^{M} p_m l_m$$
 binary digits / source symbol

## **Entropy Coding Example**

| Source Symbol | l Probability                 | Fixed-Length Code                           | Huffman Code                                   |
|---------------|-------------------------------|---------------------------------------------|------------------------------------------------|
| $a_1$         | 1/2                           | 000                                         | 0                                              |
| $a_2$         | 1/8                           | 001                                         | 100                                            |
| $a_3$         | 1/8                           | 010                                         | 101                                            |
| $a_4$         | 1/16                          | 011                                         | 1100                                           |
| $a_5$         | 1/16                          | 100                                         | 1101                                           |
| $a_6$         | 1/16                          | 101                                         | 1110                                           |
| $a_7$         | 1/32                          | 110                                         | 11110                                          |
| $a_8$         | 1/32                          | 111                                         | 11111                                          |
|               | H = 2.31 bits / source symbol | $\bar{l} = 3$ binary digits / source symbol | $\bar{l} = 2.31$ binary digits / source symbol |

#### **Huffman Code**



#### **Huffman Code (cont.)**

- Huffman code is optimum variable-length code
- Rate for Huffman code will always be within 1 binary digit of source entropy
- By encoding source symbols in blocks of length L, can get to within 1/L binary digits of source entropy
- Huffman code satisfies prefix condition no codeword is the prefix of another ⇒ no markers are needed to separate codewords
- JPEG standard for lossy coding specifies entropy coding using either Huffman code or arithmetic code

# **Summary of JPEG Picture Quality**

• For color images with moderately complex scenes

| Rate (bits/pixel) | Quality                         |  |
|-------------------|---------------------------------|--|
| 0.25 - 0.50       | Good to Very Good               |  |
| 0.50 - 0.75       | <b>Moderate to Good</b>         |  |
| 0.75 - 1.5        | Excellent                       |  |
| 1.5 - 2.0         | Indistinguishable from Original |  |