Nonlinear Filtering

- Relatively new area
- Results are only beginning to appear in textbooks
- Theory is unlikely to ever be as compact as that for linear filters
- Much work is statistically based

Example

• Consider the following 1-D sequence:

m	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
f[m]	2	2	2	14	2	2	2	2	4	5	6	7	8	8	8
g[m]															

• Moving average (linear) filter

$$g[m] = \frac{1}{3}(f[m-1] + f[m] + f[m+1])$$

Assume boundary value is extended on left and on right

• Final result for linear filter

m	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
f[m]	2	2	2	14	2	2	2	2	4	5	6	7	8	8	8
g[m]	2	2	6	6	6	2	2	$2\frac{2}{3}$	$3\frac{2}{3}$	5	6	7	$7\frac{2}{3}$	8	8

Observations

- smeared impulse (outlier) to width of filter
- broadened transition region between two constant levels
- these effects becoming increasingly pronounced as width of filter increases

• Observations (continued)

m	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
f[m]	2	2	2	14	2	2	2	2	4	5	6	7	8	8	8
g[m]	2	2	6	6	6	2	2	$2\frac{2}{3}$	$3\frac{2}{3}$	5	6	7	$7\frac{2}{3}$	8	8

- new signal values have been introduced
 ⇒ must requantize
- iterating filter will cause continued smearing of impulse and broadening of edges

Median filter

$$g[m] = median(f[m-1], f[m], f[m+1])$$

m	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
f[m]	2	2	2	14	2	2	2	2	4	5	6	7	8	8	8
g[m]															

• Final result for median filter

m	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
f[m]	2	2	2	14	2	2	2	2	4	5	6	7	8	8	8
g[m]	2	2	2	2	2	2	2	2	4	5	6	7	8	8	8

Observations

- impulse is eliminated, independent of its amplitude
- constant regions and the edge between them are all preserved
- no new signal values occur
- repeated filtering will have no further effect

Analysis of Standard 1-D Median Filter

Definitions

- Length L input signal: f[m], m = 0,...,L-1
- Length 2N + 1 median filter:

$$g[m] = median(f[m-N], \dots, f[m], \dots, f[m+N])$$

- Constant neighborhood: a region of at least N+1 consecutive points with same value
- Edge: a monotonically rising or falling set of points lying between two constant neighborhoods
- Impulse: any set of N or fewer points with values different from the surrounding regions which are identically-valued constant neighborhoods

Definitions (continued)

- Oscillation: a sequence of points that are not part of a constant neighborhood, edge, or impulse
- Root: a signal that is not modified by filtering

Properties of the Standard Median Filter

- Impulses are eliminated in one pass.
- A signal is a root if and only if it consists of only constant neighborhoods and edges.
- A root for filter size N is a root for all filters of size M < N.
- Repeated filtering will yield a root in at most (L-1)/2 passes (usually many fewer).

Properties (continued)

- The degree of smoothing increases with filter size N.
- The filter resolution (size of smallest detail passed) is N+1.
- To efficiently compute each output value, delete leftmost point in window and insert new point on right into sorted list (0[log₂(2N+1)] comparisons).

Example

Result of filtering oscillations with 3 point standard median filter

r	m			2	3	4	5	6	7	8	9	10
Initial Input		0	0	1	0	1	0	1	0	1	0	0
Outputs:	1st pass	0	0	0	1	0	1	0	1	0	0	0
	2nd pass	0	0	0	0	1	0	1	0	0	0	0
	3rd pass	0	0	0	0	0	1	0	0	0	0	0
	4th pass	0	0	0	0	0	0	0	0	0	0	0

Extensions to Standard Median Filter

Recursive Median Filter

g[m] = median(g[m-N],...,g[m-1], f[m], f[m+1],...,f[m+N])

Properties

- More smoothing for same size filter
- Generates a root in one pass
- Same root set as for standard median, but same input may go to different roots
- Output not direction-invariant

Ranked Order Filters

Output n-th largest value in window $g[m] = n-\text{th largest value } (f[m-N], \dots, f[m], \dots, f[m+N])$

Special cases

 $\begin{array}{cc} \underline{n} & \underline{\text{filter type}} \\ 1 & \text{minimum} \\ N+1 & \text{median} \\ 2N+1 & \text{maximum} \end{array}$

Properties

- tend to be peak or valley detectors
- for n ≠ N+1, only root signals are constant valued
- can also implement recursively.