2.4 IMAGE ENHANCEMENT

- 1. Overview
- 2. Grayscale transformations
- 3. Linear filtering
- 4. Nonlinear filtering

Overview of Image Processing Strategies

• Enhancement

- degradation not well defined
- criteria for improvement only qualitatively stated

Restoration

- detailed model for degradation
- process image to maximize mathematically specified performance measure

Reconstruction

- generate image from non-image data, or image information that is quite different from final desired form
- detailed mathematical description of process by which data was obtained

Examples

- Enhancement
 - contrast stretching
 - sharpening
 - smoothing

Restoration

- deblurring of mis-focused images
- deblurring of images degraded by motion
- removal of clouds and haze from images of ground terrain obtained from air- or space-borne platform

• Reconstruction

- computed tomography
- synthetic aperture radar
- magnetic resonance imaging
- descreening

Types of Enhancement Operations

- Grayscale transformations
- Spatial filtering
 - Linear filtering
 - Nonlinear filtering

Preliminaries

• Digital Image

$$f[m,n], 0 \le m \le M-1, 0 \le n \le N-1$$

M × N array of integers - each taking on a value between 0 (black) and 255 (white) (8 bits/pixel)

Histogram

Density function describing the distribution of gray values in the image

$$h_f[b] = \frac{1}{MN} \{ \text{No. pixels (m,n): } f[m,n] = b \}$$

$$h_f[b] = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \delta[f[m,n] - b] , \quad 0 \le b \le 255$$

properties:

a.
$$0 \le h_f[b] \le 1$$

b.
$$\sum_{b=0}^{255} h_f[b] = 1$$