2.3.5 HALFTONING

Used for representation of continuous-tone with dev-
ices that are bi-level, or which can generate more than
two output levels but not a sufficient number of levels
to prevent the appearance of quantization artifacts.

All halftoning techniques rely on a local spatial aver-
age over binary textures by the human viewer to
create the impression of continuous-tone.

Detail is rendered by locally modulating these tex-
tures.
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Units for Gray-Value (Ideal)

Texture

Digital Value 255 191 127 63 O
Absorptance 00 025 05 0.75 1.0

Reflectance/ 1.0 0.75 05 025 0.0
Transmittance

29



Notation

0 = f[m,n] =1, digital, continuous-tone original image

g[lm,n] =0, 1, digital halftone image

g(x,y) — displayed/printed halftone image



Model for Printed/Displayed Images

g(x,y) =Y ¥ glm,n]ps(x —mR, y — nR)

m n

® device-addressable points lie on a square lattice with
interval R XR

® ps(x,y) - printed/displayed spot profile

e if there is spot overlap, it is assumed to be additive.
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Halftoning Techniques

1. Binarization with a constant threshold
2. Pattern printing

3. Screening

4. Error diffusion
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Binarization with a Constant Threshold

1, f[m,n]=20.5
glm,n] =
0, else

® minimizes mean-squared error

E=yYy | {fm,n] — g[m,n]| 2

® does not yield acceptable quality
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PATTERN PRINTING

pattern library p[m,n; (]

Binary

Pattern

Index £ 0 1 2 3 4
Average 000 025 050 075  1.00
Absorptance

M X N patterns yield MN + 1 output quantization lev-
els (Here M =N =2).



® quantizer design

inde output

¢ levels
A
4 1.00F —=
. 3 075F -
& 2 050F
32 ©
1 025 =
al | 1 |

0 004725 0375 0.625 0.875  ~— threshold

Input

® Mapping to index image

f;[m,n] = 0:[? — 1/2)/MN < f[m,n] < [{ + 1/2]/MN
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f{m,n] f;[m,n] Pattern | g[m,n]
> Quantizer > Library >
LUT
0.110.110.3]0.3 0101 1¢(1
0.210.410.7]0.7 112(3]3
0.210.310.7]10.9 11134
0.310.7({0.9]0.9 11344
f{m,n] f;[m,n] g[m,n]
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Halftone image is larger than continuous-tone origi-
nal by factor M X N.

If device resolution is sufficiently high, pattern print-
ing will yield acceptable results.

At lower resolution, images appear blocky and lack
detail.

There is a tradeoff between detail resolution and
number of quantization levels.
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Alternate Representations for Pattern Library

® Dot profile function p[m,n; ]

1 0 1 2 3 4

® Index matrix

312 - Entries indicate order in which dots are added
to binary structure
1|4 - Stacking constraint must be satisfied
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Stacking Constraint
For any 0 < ( < MN,

p[m,n;Q] =1 = p[m,nk]=1 Vk2 0
or

p[m,n;{]1=0 = p[m,n;0]=0 Vk<{

® A dot profile that does not satisfy this constraint:
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Alternate Representations for Pattern Library (cont.)

« Index matrix ifm,n] 1

« Threshold Matrix t{m,n]
t[m,n]=@G[m,n] - 0.5)/MN 0.62510.375

0.125 [ 0.875
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Alternate Implementation for Pattern Printing

3 threshold
fIm,n] 2}‘2 flm,n] g[m,n]
——>1 Pixel >
Replicate
0.62510.375
t[m,n] 0.12510.875
0410410.7(0.7
0.410.7 04(1041(0.7]0.7
0.310.7 0.310.3(0.7(0.7
0.310.3(0.710.7
f[m,n] f[m,n] g[m,n]

e threshold signal is doubly periodic

tfm,n] = t[m + kM, n + (N]
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SCREENING

f[m,n] glm,n]

t[m,n]

1, {[m,n]2t[m,n]
g[m,n] =
0, else

42



Halftone image is same size as continuous-tone origi-
nal image.

Technique is equivalent to photographic contact
screening process traditionally used in graphic arts
and printing.

Dot profile function must satisfy stacking constraint.

Screening achieves better detail rendition than pattern
printing via partial dotting property.
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Partial Dotting

flm,n] g[m,n]

1/4|11/411/4 | 1/4

1/41/4 | 1/4| 1/4

1/411/4|1/4|1/4

1/411/411/4|1/4

\ t[m,n] /

29 (15123 131
1/411/4]11/4| 1/4 155

21 |7 |_1.1.9
> | 32132132132 -

1/411/411/4| 1/4

3/4|3/4]3/4]3/4 13 | 5 |3 |17
32132132132
3/4|3/4|3/4]3/4 27 |19 |11 (25

| 32 132132132

3/4|3/4]3/4]3/4

3/4|3/413/4]3/4

3/413/4]13/4]3/4

3/413/413/4]3/4
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Different Representations for Screening

1. Spatially varying threshold

1, flm,n] >t[m,n]

f{m,n] gmn] = {0, AT

5/8(3/8
1/817/8

t[m,n]

2. Addition of dither signal

1, f{fm,n] + d[m,n] >0.5
f[m,n] g[m,n] = {0, e[lrsrén] + d[m,n]

-1/8| 1/8
3/8 |-3/8
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3. Point-to-Point Nonlinear Mapping Via Dot Profile

Function

Input Gray O<b<1/8 1/8<b<3/8 3/8<b<5/8 5/8<b<7/8 7/8<b<l
Level b

Binary Pattern 010 0|10 01 111 1 1
plm,n;b] 0 1o 111

® p[m+kM, n+ IN; b] =p[m,n;b]

® g[m,n]=p[m,n; f[m,n]]

46



Choice of Threshold Matrix (Screen Function)

® Size of matrix (M and N) determines period of screen
and number of quantization levels.

® Thresholds are chosen to yield correct tone reproduc-
tion (minimum quantization error).

® Spatial arrangement of the thresholds determines
characteristics of the texture that results.
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Recall Dual Representation

Index Matrix Threshold Matrix
312 5/8|3/8
1| 4 1/8]7/8

1[m,n] tfm,n]=(i[m,n] - 0.5)/MN



Clustered Dot Screen

63 (5814937385059 ]| 64
574813612223 |39(51]60
4713512111112 (24]40] 52
34120101 4|1 |5 |13]25
33(19]1913]2]|6/(14]26
46 132 (18| 8 | 7 | 1527 |41
56 (4513117162842 53
62 (551441302943 |54 61

1{m,n]

® Consecutive thresholds are located in close spatial
proximity.
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Properties of Clustered Dot Screen

1. Relatively visible texture

2. Relatively poor detail rendition

3. Uniform texture across entire grayscale

4. Robust performance with non-ideal output devices

— non-additive spot overlap
— spot-to-spot variability
— noise
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Dispersed Dot Screen
Bayer’s Optimum Index Matrix (1973)

Recursive Definition (Judice, Jarvis, Ninke, 1974)

1. Leti [m,n] be any M X N index matrix

2. Define a new 2M X 2N index matrix i[m,n] as

4G [m,n] — 1)+3 | 4G [m,n]—1)+2

4G [m,n]—1)+1 | 4G [m,n]-1)+4

1[m,n]

3. Recursively generate 2K x 2K matrix starting with
1 X 1 index matrix [1].
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Example
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54
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44

28
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26

52

12

58

50

10

56

12| 8|10} 6

2 4 116| 2 |14
—

4 915|117

111313 )15

45

29

35

21

47

31

37

23

13

61

53
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7

55

33

17

41

25

35

19

43

27

49

55

51

11

57

Consecutive threshold are located far apart spatially.
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Recursive Definition for Threshold Matrix

', , 05 |
t [m,n] — ———
timnj+ o | thonl=Zog
_______ | — e o
, 1.5 , 1.5
timn] -5 | tmal+ Zog
t[m,n]

® Yields finer amplitude quantization over larger
(2ZM X 2N) area.

® Retains good detail rendition within smaller M XN
regions.
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Example illustrating
dispersed dot screen

improved detail rendition with a

clustered dot

29 115123 |31

32 132 {32 ]| 32

2117 11 1.9

32 | 32 | 32 | 32

1315 | 3 |17

3/4

3/4 1 3/4

3/4

32 | 32 | 32 | 32

27 |19 |11 125

3/4

174 1/4

3/4

32 132132132

3/4

1/4 | 1/4

3/4

dispersed dot

3/4

3/4] 3/4

3/4

23 |15 |19 |11

32 1 32 |1 32 | 32

f{m,n]

7 13113 |27

32132 132]32

179 121113

32 1 32 | 32 | 32

1 | 2515 129

32 132132 ] 32

t[m,n]



Properties of Dispersed Dot Screen

1.

Within any region containing K dots, the K thres-
holds should be distributed as uniformly as possible
between O and 1.

Textures used to represent individual gray levels have
low visibility.

Improved detail rendition.

Transition between textures corresponding to dif-
ferent gray levels may be more visible.

Poor performance with non-ideal output devices
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FOURIER ANALYSIS

1. Screening

® Continuous-tone, continuous-parameter original
image

CSFT
f(x,y) & F(u,v)

f[m,n] = f(mR, nR)

e Halftone image

CSFT
gx,y) & G(u,v)

g(x,y) =Y ¥ g[m,n]ps(x —mR, y—nR)

mn

CSFT
ps(X,y) © Ps(u,v)
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Definition of Transforms

® Continuous-space Fourier transform (CSFT)

F(u,v) = [[f(x, y)e I2HURHVY) gx gy

® Discrete Fourier transform (DFT)

[ Ml N-1 on(2K 2L
Pk,%;b]= —— ¥ ¥ plm,n;ble

MN m=0 n=0
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Dot profile function (M X N period)

DFT
p[m,n;b] < Pk, {;b]

g[m,n] = p[m,n; f[m,n]]

Halftone cell - X XY X =MR,

Y =NR
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Spectrum of Halftone Image

G(u,v) =Ps(u,v) ¥ Fyp (u—m/X, v—n/Y)

Frn (u,v) = CSFT{{,,, (X,y)}

fron (X, y) = P[m, n; f(x,y)]
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Relation Between Dot Profile and Spectral Nonlineari-
ties

Input Gray b€ [0, 1/8) [1/8,3/8) [3/8,5/8) [5/8,7/8) [7/8,1)
Level b

Binary Pattern 1 00 0]1 1|1 111

p[m,n;b] e

o |Oo | O
)
o
[y
o
[u—
o
[—
[



Ap[0,1;b] AP[L,1;b]

1F — 1r

0 1 1 1 1 1 1 1 ) O 1 1 1 1 1 1 1 )
0O 1/4 172 34 1 b| 0 1/4 12 34 1 b
A p[0,0;b] A p[1,0;b]

1F 1f —

O 1 1 1 1 1 1 1 > O 1 ] 1 1 1 1 1 )
0O 1/4 172 34 1 b| 0 1/4 12 3/4 1 b

0 1
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Input Gray [0, 1/8) [1/8,3/8) [3/8,5/8) [5/8,7/8) [7/8,1)
Level b

1/4|11/4 0|12 1/411/4 0
1/4|11/4 1721 0 3/411/4

DFT
P[k,£;b] 0

o |Oo |
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A PI0,1;b] A PL1,1;b]
1t 1F
12 12}
O- 1 1 1 1 S . 0- 1 1 1 1 1
4 121340 1 | L 14 12 344
A P[0,0;b] A P[1,0:b]
1F — 11
12} 12}
O 1 1 1 1 1 1 1 > 0 1 1 1
L 14 12 34 1 b V4 172 3/4
0 1

63



Nonlinearly Transformed Images

fmn (X, y) = P[m,n;f(x,y)]

1-D Example
foo(x) A P[0,0;b]
1F 1}
12} 12}
0— % 12 12 34 10
>

f(x)

xY



f10(x)) AP[1,0:b]

1" 77N 1
// \\
i ; \ !
/ \
12+ / \ 12}
/, \\
L . i
0 <7 |_| |_| b 0 I . . L
X 0 1/4 1/2 3/4 b
o
f(x)
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2

. Pattern Printing

Continuous-tone, continuous-parameter original
image

CSFT
f(x,y) & F(u,v)

Halftone cell - X XY, X =MR, Y =NR

Sample-and-hold image

X
—, =

X | * combyxy [f(X,y)]

Tf(x,y) =rect

F(u,v) = sinc(Xu, Yv) rep % %[F(u,v)]

In analysis of screening, replace {(x,y) by f(x,y) and
F(u,v) by F(u,v).



Other Screen Functions

® Optimized Threshold Matrices (Allebach and Stra-
dling, 1979)

® Angled Screens (Holladay, 1980)

® Macroscreens



ERROR DIFFUSION

Definition of terms

e Continuous-tone, discrete parameter, original image -
f[m,n]

® Modified continuous-tone image - I’[m,n]

e Diffusion weights - w[k, 0]

wik,0120, >y wlk,0]=1
k ¢

® Halftone image - g[m,n]



Description of algorithm

e Start with f[m,n] = f[m,n]

® Scan pixels in image in a predetermined order, and
carry out following computations

threshold

T >
o[m,n] = 1, f[m,n]=0.5
0, else

compute error
e[m,n] = g[m,n] — f[m,n]
diffuse error
flm+k, n+0] = fim+k, n+9] — w[k, ¢] e[m,n]

(m+k, n+{) € {pixels not yet binarized}
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1-D Example

1.0 |
0.5 F

flm] =0.25

-0.5 F

1.0 i
0.5 F

05 F

1.0 |-

0.5
0 B~

-0.5

f[m] -0

1.0 |

05 F
0 -

g[m] - 0O

-0.5 F

1.0 -
05 F

wWe-

(0]::3

1.0 |-

0.5
0 -

WH

—

98) - o
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2-D Error Diffusion Weighting Filters

Y

Secondary scan
direction

3/16

5/16

7/16

1/16

3/48

5/48

7/48

5/48

5/48

3/48

1/48

3/48

5/48

3/48

1/48

> Primary scan direction

- pixels previously binarized

- most recently binarized pixel

Floyd, and Steinberg (1976)

Jarvis, Judice, and Ninke (1976)
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Characteristics of Error Diffusion

At each step, error diffusion preserves local average
over part of image that has been binarized and part
that is yet to be binarized.

No fixed number of quantization levels.
Requires more computation than screening.
Excellent detail rendition (sharpens image).

Generally good texture with some exceptions:
— texture contouring
— worm-like patterns

— texture used to render a given
gray level is context-dependent
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FOURIER ANALYSIS (Knox, 1991)

Two Views of Error Diffusion

1. Diffuse error immediately after binarizing pixel to all
pixels in neighborhood

f >
o[m,n] = 1, f[m,n]=20.5
0O, else

e[m,n] = g[m,n] — f[m, n]
flm+k, n+9] = f{m+k, n+9] — w[k, ¢]e[m,n]

|
 XZ [ w[0,1]
r 4 / \\
w[l,-1]| w[1,0] | w[1,1]
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2. Diffuse error from all neighboring pixels to pixel to
be binarized, just prior to binarization

w[l,l]\\w[l,O]/ w[l,-1]
‘;‘X{’//

w[0,1]7

flm,n] = f[m,n] - ¥ ¥ w[k, 9]e[m—k, n—0] (1)

k ¢
o[m,n] = {1 , f[m,n]=0.5 )
0, else

e[m,n] = g[m,n] — f[m,n] 3)
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Recursive Expression for the Error Image

Combine Egs. (1) and (2)

e[m,n] = g[m,n] — f[m,n] + ¥ ¥ w[k, ¢]e[m—k, n—0]
k ¢

Discrete-Space Fourier Transform (DSFT)

E(,v) = 3 ¥ e[m,n]e JmH+nY)

mn

E(H,V) = G(IJ,V) - F(l“"’V) + W(H,V)E(H,V)

5



We would like an expression for G(W,V) in terms of
F(u,v)

Instead, we have
G(1,v) = F(,v) + W, V)E(, V)
High-pass filter
W, v) =1-W(u,v)
Error spectrum is not known

E(u,v) = G(1,v) — F(1,v)
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Error Model

E(W,v) = cF(1,V) + R(K,V)

® Original image component cF(lL,V); constant ¢
depends on weighting and input image

weighting C
1-D 0.0
Floyd and Steinberg | 0.55
Jarvis, Judice, 0.80
and Ninke

® Residual R(l,V) - may still be image dependent



Edge-Enhancing Property of Error Diffusion

® (Combine
G(u,v) = G(W,v) + W(,vV)E(W,v) and

E(u,v) = cF(u,v) + R(W,v)

G(W,v) = [1 + cW(, VIF(W,v) + WL, VIR, V)

e Edge-Enhancing Filter 1 + cW(u,V)

e Blue Noise W(,V)R(U,V)
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