2.3.3 HUMAN VISUAL SYSTEM

Image Quality Paradigm

Original Image

Reproduced Image

- How good does reproduction need to be in order to appear identical to the original?
- If image quality is high, it may be argued that threshold phenomena will govern the perceived difference between the two images.

Viewing Geometry

- Both arrows A and B generate the same retinal image R.
- It is convenient to measure the size of the retinal image in terms of the subtended angle θ

$$\theta = \arctan\left[\frac{h_A}{d_A}\right] = \arctan\left[\frac{h_B}{d_B}\right]$$

1

Relative Luminous Efficiency

• The human viewer is not equally sensitive to light at all wavelengths

• Luminance

$$L = k_m \int_0^\infty V(\lambda) S(\lambda) d\lambda \quad (cd/m^2)$$

 $k_m - 680 \text{ lm/W}$

 $S(\lambda)$ - spectral radiance density of stimulus

- Luminance is a measure of the perceived brightness of the stimulus.
- Luminances of 0.1 to 1000 cd/m² are typically encountered in displays.

Weber's Law

• Dependence of detectability of a change in stimulus on the magnitude of the stimulus

• The minimum value of ΔL for which the two subfields are distinguished 50% of the time satisfies

$$\frac{\Delta L}{L} = k$$

k - constant (Weber fraction) \approx 0.01 to 0.02

• Define *contrast* as $\Delta L/L$

:

Response to Spatially Varying Stimulus

• Dependence of contrast sensitivity on spatial frequency

Response to Temporally Varying Stimulus

• Dependence of flicker sensitivity on temporal frequency

8

Spatial Frequency Channels

Channel gain depends on ρ_0 in accordance with spatial frequency contrast sensitivity

Spatial Summation

spatial sensitivity weighting function

Spatial Masking

Perceptibility of		vs.	
-------------------	--	-----	--