2.1.3 LINEAR, SHIFT-INVARIANT (LSIV)
IMAGING SYSTEMS

- Imaging a Point Source
d;
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Point Sprea

Functi
Object Lens in anetion Image
Plane Pupil Plane
P(u,v)
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1_1 + 1 M = —  magnification
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Alternate Representation

P(u,v)
A
y
Yo
A
X0 X
Object Pupil Image

(Point Spread Function)
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Relation Between Pupil and Point Spread

Coherent Imaging System

CSFT
ho(x,y) < Hg(u,v) (coherent transfer function)

Hc(u,v) = P(Adju, Ad;v) (X\- wavelength of optical

radiation)

Incoherent Imaging System

CSFT
hi(x,y) < Hi(u,v)

hI(X)Y) = | hC(X7Y) I 2
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Optical Transfer Function
%(U,V) = HI(u)V)/HI(07 O)
Modulation Transfer Function (MTF)

M(u,v) = | #(u,v)|
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Imaging T'wo Point Sources

Image of 2 point
sources separated by
Rayleigh distance

e Other criteria exist for resolution.

e It is possible to modify the transmittance func-
tion within the pupil to improve resolution.
This is referred to as apodization.
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Imaging an Extended Object

f(x,y) —

Imaging
System

> g(X) Y)

fx,y) = [ [ £(&n) 8(x — &, y — n) d&dn

f(fﬂ?) 5(X T g: Yy — 77)')

Imaging
System

"f(&??) h(X T M£7 Yy — Mﬁ)

(by homogeneity)
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By superposition,
g(x,y) = [ [ £(&,m) h(x — M¢, y — Mn) dédn
g(x,y) = # [ f[ﬁ, —11771-] h(x — &, y — n)dédn

diffraction-limited image predicted by 2-D convolution
image geometrical optics  integral

e This type of analysis extends to a very large
class of imaging systems.
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e Generally, the shape of the point spread func-
tion will depend on its position in the image
plane. In this case, the image plane is parti-
tional into patches within which the point
spread function is approximately the same.

e In what follows, we will always assume unity
magnification.
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CSFT and LSIV Imaging Systems

Convolution Theorem

As in the 1-D case, we have the following identity
for any functions f(x,y) and h(x,y),

[[f(&,mh(x—¢,y—n)dédn = [ [f(x—&,y—n)h(€,n)dEdn

Consider the image of a complex exponential
object:

Imaging

el2m[ux+vy] —> System

— [ el2mu(x—&)+v(y—n)]

x h(¢,n)dédn
— ei2mux+vy] ffh(ﬁ,n) ei2m[ué+vn) dédn
_ H(u,v) ei27r[ux+vy]

ei2mux+vy]

= is an eigenfunction of the system
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Now consider again the extended object:

f(X7 Y) — >

Imaging
System

__)g(X7Y)

f(x,y) = [ [ F(u,v) el27x+vyl qudy

By linearity:

g(x,y) = [ [ H(u,v) F(u,v) 2™ +vy] qudy
= G(u,v) = H(u,v) F(u,v)
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Convolution Theorem

Since f(x,y) and h(x,y) are arbitrary signals, we
have the following Fourier transform relation

0o 00 CSFT
f f f1 (67 U)f2(X“§, Y—n)dfdﬂ > Fl(u2v) FQ(U,V)
or

CSFT
fl(X;Y) * % f2(x7Y) > Fl(uav)F2(u7V)
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Product Theorem

By reciprocity, we also have the following result

CSFT
f1 (X7Y)f2(x7y) > Fl(uav) * % FQ(U,V)

As in the 1-D case, this can be very useful for cal-
culating the transforms of certain functions.
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Transfer Function of Incoherent Imaging System
Recall
hi(x,y) = |he(xy) |
= ho(x,y) ho(x,y)
Flhe(xy)} = [ [ holxy) e 2 dxdy
= {[ [ he(x,y) e 327l (=] gxdy}’

— HE (—11, _V)

HI(u7V) — HC(uav) * % Hé(_u7 —V)
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