EE 438 Digital Signal Processing with Applications Homework #6 due 10/19/2007

- 1. Spend 2 hours studying the notes, and making sure you fully understand the concepts of:
 - a) Sampling
 - b) Recontruction
 - c) Zero order hold (i.e. the model of a physical D/A converter)

Do this in a quite room with no disturbances.

- 2. Consider a digital signal processing system with the following sequence of operations:
 - a. The CT signal x(t) is sampled at period T to form the DT signal y(n)
 - b. The DT signal y(n) is filtered by the filter $H(e^{j\omega})$ to form the signal DT z(n).
 - c. The DT signal z(n) is converted to a continuous time signal r(t) using a zero order hold.
 - d. The CT signal r(t) is filtered with a perfect LPF with a cutoff of 1/(2T) to form the CT signal $x_r(t)$.

Derive expressions for the frequency transforms of each signal. Assuming that the signal x(t) is bandlimited to frequency 1/(2T), calculate the frequency response for $H(e^{j\omega})$ that is required to achieve perfect reconstruction of x(t).

3. The following system shows an interpolator with discrete input x(n). Assume that the low pass filter has frequency response $H(e^{j\omega}) = 2\text{rect}(\omega/\pi)$ for $|\omega| < \pi$.

Compute the output z(n) for the following inputs.

a.
$$x(n) = \delta(n)$$

b.
$$x(n) = \delta(n-1)$$

c.
$$x(n) = 1$$

d.
$$x(n) = \cos(\pi n / 4)$$

e.
$$x(n) = \operatorname{sinc}(n/8)$$

4. The following system shows a decimator with discrete input x(n). Assume that the low pass filter has frequency response $H(e^{j\omega}) = \text{rect}(\omega/\pi)$ for $|\omega| < \pi$.

Compute the output z(n) for the following inputs

- a) $x(n) = \delta(n)$
- b) $x(n) = \delta(n-1)$
- c) x(n) = 1
- d) $x(n) = \cos(\pi n/4)$
- e) $x(n) = \operatorname{sinc}(n/8)$
- 5. Consider the digital filter described by the following difference equation

$$y(n) = 0.25 (x(n+1) + 2 x(n) + x(n-1))$$

- a) Find a simple expression for the frequency response $H(e^{j\omega})$ of this filter.
- b) Sketch the magnitude and phase of $H(e^{j\omega})$. Now consider the following digital system,

where $H(e^{j\omega})$ is the filter from parts a and b and $G(e^{j\omega})$ is an ideal low-pass filter with a cutoff frequency of $\pi/4$ rad/sample and unity gain in the passband.

- c) Find the overall frequency response $F(e^{j\omega})$ for this system
- d) Sketch the magnitude and phase of $F(e^{j\omega})$.
- e) Discuss the possible advantages of a system like that shown above compared to directly implementing a digital filter with frequency response $F(e^{j\omega})$ as a single stage.