EE 438 Digital Signal Processing with Applications Homework #4 due 9/24/2007

- 1) Calculate the DTFT for each of the following signals where |a| < 1
 - a) $x(n) = \int_{-\pi}^{\pi} \left(\frac{\cos(\omega)^{3}}{1 + |\omega|^{3/2}} \right) e^{j\omega n} d\omega$ b) $x(n) = a^{n} u(n)$ c) $x(n) = a^{n} e^{j\omega_{0} n} u(n)$ d) x(n) = u(n) - u(n - N)
- 2) Prove that for a LTI system with input x(n), and output y(n), the output is given by $y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$ where h(n) is the output when $x(n) = \delta(n)$ i.e. h(n) is the impulse response.
- 3) Consider a DT LTI system with impulse response h(n), input x(n), and output y(n). Show that when the input is $x(n) = e^{j\omega_0 n}$, then the form of the output is $y(n) = Ce^{j\omega_0 n}$, and determine an expression for the complex number *C*.
- 4) Consider a DT LTI system with transfer function $H(e^{j\omega})$, input x(n), and output y(n). Calculate the output for the following inputs.
 - a) $x(n) = e^{j\omega_0 n}$
 - b) $x(n) = e^{j(\omega_0 n + \phi)}$
 - c) $x(n) = \cos(\omega_0 n)$
 - d) $x(n) = \cos(\omega_0 n + \phi)$
 - e) $x(n) = \sin(\omega_0 n)$
 - f) $x(n) = \sin(\omega_0 n + \phi)$
- 5) Consider a DT LTI system described by the following equation y(n) = x(n) + 0.5y(n-1)
 - a) Compute the impulse response h(n) of the system.
 - b) Compute the frequency response $H(e^{j\omega})$ of the system by taking the DTFT of the difference equation.
 - c) Compute the DTFT of h(n) and verify that it is the same as $H(e^{j\omega})$.
- 6) For the LTI systems below,
 - i. find the impulse response,
 - ii. find an expression for the frequency response (simplify as much as possible),
 - iii. sketch the magnitude and phase of the frequency response,
 - iv. describe in general terms the effect that the filter has on a signal.
 - a. y[n] = (x[n] + x[n-1])/2
 - b. y[n] = (x[n] + x[n-2])/2
 - c. y[n] = x[n] + x[n-1] + y[n-1]

7) Consider the system shown where both filters have impulse response $h_0(n)$ and frequency response $H_0(e^{j\omega})$.

- a) Determine an expression for the impulse response h(n) of the overall system in terms of the impulse response of the filter $h_0(n)$.
- b) Determine an expression for the frequency response $H(e^{j\omega})$ of the overall system in terms of the impulse response of the filter $H_0(e^{j\omega})$.
- For the following parts, assume that the filters obey the difference equation y[n] = (x[n] + x[n-1])/2
- c) Calculate $h_0(n)$, the impulse response of each filter.
- d) Calculate $H_0(e^{j\omega})$, the frequency response of each filter.
- e) Calculate the impulse response of the overall system h(n).
- f) Calculate the frequency response of the overall system.
- 8) An LTI system has input x(n) and impulse response h(n). Compute the output y(n) for each of the following cases (a, b < 1).

9) A system has the following input/output behavior.

$$y(n) = \sum_{k=-\infty}^{n} (1/2)^{n-k} x(k)$$

For each of the following parts justify your answer and be specific.

- a) Show this system is linear.
- b) Show this system is time invariant.
- c) Compute the impulse response h(n).
- d) Is the system stable?

e) Compute
$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$$
.

- f) Compute y(n) when $x(n) = \cos(\pi n)$.
- g) Write a difference equation for this system