EE 438 Digital Signal Processing with Applications Homework #2 due 9/7/2007

1. Consider a DT LTI system described by the following equation

$$y(n) = x(n) + 2x(n-1) + 0.5y(n-1).$$

- a. Compute the impulse response h(n) of the system.
- b. Compute the output when x(n) = u(n).
- c. Compute the output when $x(n) = 0.25^n u(n)$.
- 2. For each of the following C-T signals, compute the CTFT and manually plot the magnitude of the result.
 - a) $e^{-t}u(t)$
 - b) $e^{j\omega_0 t}$
 - c) $rect(t)e^{j6\pi t}$
 - d) $\operatorname{sinc}(t)\cos(2\pi f_0 t)$
 - e) $\cos(2\pi f_0 t) \operatorname{rect}(t)$
- 3. For each of the following D-T signals,
 - i. Compute the DTFT $X(\omega)$. Simplify your answer as much as possible.
 - ii. Sketch the magnitude and phase of $X(\omega)$.
 - a) u(n + N) u(n N 1)
 - b) $2^{n}u(-n)$
 - c) $a^n \sin(\omega_o n) u(n) \mid a \mid < 1, \mid \omega_o \mid < \pi$
 - d) $\cos(18\pi n/7)$
 - e) $\frac{\sin(\pi n/8)}{\pi n}$
- 4. Let x(n) and y(n) be D-T signals with DTFT's $X(e^{j\omega})$ and $Y(e^{j\omega})$ respectively. Use the formulas for the DTFT and its inverse to compute the DTFT's of the following signals.
 - a) $x(n-N)e^{j\omega_0 n}$
 - b) $x^*(-n)$
 - c) x(n)y(n)
 - d) $x(n)^2$

5. Consider the filter described by the difference equation

$$y[n] = \frac{1}{4} \left\{ x[n] - 2x[n-1] + x[n-2] \right\}$$

- a. Find a simple expression for the frequency response $H(\omega)$
- b. Find a simple expression for the magnitude response $|H(\omega)|$
- c. Sketch $|H(\omega)|$
- d. Find a simple expression for the phase response $\arg\{H(\omega)\}\$
- e. Sketch $arg\{H(\omega)\}$