EE 438 Digital Signal Processing with Applications Homework \#1 due 8/31/2007

1. For each signal below, do the following:
i. \quad Sketch $x(t)$
ii. State whether it is right-sided, left-sided, or two-sided.
iii. State whether it is causal, anti-causal, or neither.
iv. Calculate the metrics $E_{x}, P_{x}, x_{r m s}, M_{x}, A_{x}$, and $x_{\text {avg }}$.
a. $\quad x(t)=t e^{-t / 2} u(t)$
b. $\quad x(t)=\sum_{k}(-1)^{\mathrm{k}} \operatorname{rect}(t / 2-2 k)$
c. $\quad x[n]=e^{(j-1) \pi n / 2}$
2. Express each signal shown below in terms of standard functions. Note that the signal for part (b) is a sinusoid, and should be expressed as such.

(b)
3. For each system below, determine whether or not it is:
i. linear,
ii. time-invariant,
iii. causal,
iv. stable,
v. memoryless

For each of the above properties, if you think it holds, prove it. Otherwise, find a counter-example. In addition, find the response to an impulse.
a) $y(t)=\int_{t-1}^{t} x(\tau) \mathrm{d} \tau$
b) $y(t)=\operatorname{rect}(x(t))$
c) $y[n]=x[n]+(1 / 2) y[n-1]$
d) $y[n]=\left\{\begin{array}{cc}x[n], & x[n]<|n| \\ |n|, & \text { else }\end{array}\right.$
4. A LTI system has input $x(n)$ and impulse response $h(n)$. Compute the output $y(n)$ for each of the following cases $(a, b<1)$.
a) $\quad x(n)=u(n)-u(n-4) ; \quad h(n)=a^{n} u(n)$
b) $x(n)=a^{n} u(n) ; h(n)=b^{n} u(n)(a \neq b)$
c) $x(n)=a^{n} u(n) ; \quad h(n)=a^{n} u(n)$
d)

5. Find a general expression for the N roots $z_{i}, i=0,1, \ldots, N-1$ of the following polynomial, where z and w are complex-valued: $z^{N}-w=0$. Hint: Express both z and w in polar coordinates, and note that angles need only match within a multiple of 2π radians. Sketch the roots in the complex plane for the following values of N and w :
a. $\quad N=8, w=1$,
b. $\quad N=4, w=2$,
c. $\quad N=5, w=j$,

