EE301 Homework #8

Problem 1 Evaluating CTFTs.

Calculate the continuous-time Fourier transform for the following signals:

a)
$$x(t) = e^{-at}u(t)$$
 for $a > 0$

- a) $x(t) = te^{-at}u(t)$ for a > 0
- b) $x(t) = \operatorname{rect}(t)$
- c) $x(t) = \operatorname{rect}\left(\frac{t-a}{b}\right)$ for any two real numbers a and b.
- d) $x(t) = \delta(t)$
- e) $x(t) = a\delta(t-b)$ for any two real numbers a and b.

Problem 2 Properties of CTFTs.

For the following problems, let $X(\omega)$ and $Y(\omega)$ be the CTFT's of x(t) and y(t), respectively. Calculate the CTFT of each function in terms of the functions x(t), y(t), $X(\omega)$, and $Y(\omega)$.

- (a) 5x(t-a)
- (b) X(t)
- (c) x(t) * y(t)
- (d) x(t)y(t)
- (e) x(-t)
- (f) $x(t)e^{j\omega_0 t}$

Problem 3 Evaluating inverse CTFTs.

Calculate the **inverse** CTFT for the following signals.

a)
$$X(\omega) = \delta(\omega)$$

- b) $X(\omega) = \delta(\omega \omega_0)$
- c) $X(\omega) = \operatorname{rect}(\omega)$

Problem 4 Evaluating CTFTs.

Use answers to Problems 1 and 2 above to compute the CTFT for the following signals.

- a) $x(t) = \operatorname{sinc}(t)$.
- b) $x(t) = \operatorname{sinc}\left(\frac{t-a}{b}\right)$ for any two real numbers a and b.
- c) x(t) = 1
- d) $x(t) = e^{j\omega_0 t}$
- e) $x(t) = \cos(\omega_0 t)$
- f) $x(t) = \sin(\omega_0 t)$

Problem 5 Transfer functions for LTI systems.

For an LTI system T we have

$$T[e^{-2t}u(t)] = te^{-t}u(t) + 2e^{-2t}u(t)$$

Determine the transfer function, $H(\omega) = \frac{X(\omega)}{Y(\omega)}$, for this system.