Bouman Not to be handed in

EE301 Homework #12

Problem 1 DFT

For each of the following signals, calculate the DFT X_k for $0 \le k < N$.

(a) $x[n] = \delta[n]$ for $0 \le n < N$. (b) $x[n] = \delta[n-k]$ for $0 \le n, k < N$. (c) $x[n] = e^{j\frac{2\pi nm}{N}}$ for $0 \le n, m < N$. (d) $x[n] = \cos\left(j\frac{2\pi nm}{N}\right)$ for $0 \le n, m < N$. (e) $x[n] = \sin\left(j\frac{2\pi nm}{N}\right)$ for $0 \le n, m < N$. (f) x[n] = u[n-p] - u[n-q] for $0 \le n < N$ and $0 \le p < q < N$.

Problem 2 Parseval's Theorem for the DFT

(a) Let the functions $\phi_k[n]$ for $0 \le n < N$ have the property that

$$\langle \phi_k, \phi_l \rangle = \alpha \delta[k-l]$$

and let

$$x[n] = \sum_{k=0}^{N-1} X_k \phi_k[n] \; .$$

Then prove that

$$\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{\alpha} \sum_{k=0}^{N-1} |X_k|^2$$

- (b) Define the functions $\phi_k[n]$, the constant α , and the innerproduct $\langle \phi_k, \phi_l \rangle$ so that the DFT transform (as defined in lecture) has the same structure as described in part a) above.
- (c) Prove Parseval's relation for the DFT.

$$\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X_k|^2$$

Problem 3 DTFT

- (a) Compute the DTFT, $X(\omega)$, for the following signals.
- (a) x[n] = u[n+m] u[n-m-1] for $m \ge 0$.
- (b) $x[n] = \delta[n-k]$
- (c) $x[n] = \cos(\omega_0 n + \phi)$
- (d) $x[n] = \sin(\omega_0 n + \phi)$
- (e) $x[n] = a^n u[n]$ where |a| < 1
- (e) $x[n] = a^{|n|}$ where |a| < 1
- (f) $x[n] = na^n u[n]$ where |a| < 1
- (g) $x[n] = a^{n-1}u[n-1]$ where |a| < 1
- (h) $x[n] = e^{(j\omega_o a)n}u[n]$ where a > 1

Problem 4 Difference Equations

Consider the discrete time system y[n] = T[x[n]] with input x[n] and output y[n] which obeys the following difference equation

$$y[n] = 2r\cos(\theta)y[n-1] - r^2y[n-2] + x[n]$$

where |r| < 1 and θ are real valued constants.

- (a) Prove the system $T[\cdot]$ is linear.
- (b) Prove the stem $T[\cdot]$ is time invariant.
- (c) Calculate the frequency response $H(\omega)$ of the system.
- (d) Calculate the impulse response h[n] of the system.

Problem 5 Sampling and DTFT's

Consider the functions

$$y[n] = x(nT)$$

For each example, i) sketch x(t), i) calculate $X(\omega)$ the CTFT of x(t), ii) sketch $|X(\omega)|$, iv) sketch y[n], v) calculate $Y(\omega)$ the DTFT of y[n], vi) sketch $|Y(\omega)|$, vii) indicate if there is aliasing.

- (a) $x(t) = (\operatorname{sinc}(t))^2$ and T = 3/8.
- (b) $x(t) = (\operatorname{sinc}(t))^2$ and T = 1/2.
- (c) $x(t) = (\operatorname{sinc}(t))^2$ and T = 5/8.

Problem 4 Sampling and Reconstruction

A signal x(t) is sampled at period T to form y[n].

$$y[n] = x(nT)$$

The signal y[n] is then used as the input to an impulse generator to form s(t).

$$s(t) = \sum_{k=-\infty}^{\infty} y[n]\delta(t-kT)$$

The signal s(t) is then filtered to form the final output z(t) using the filter $H(\omega)$.

- (a) Sketch a general function $X(\omega)$ which is bandlimited to $|\omega| < \frac{\pi}{T}$.
- (b) Calculate $Y(\omega)$ in terms of $X(\omega)$.
- (c) Sketch $Y(\omega)$ for a typical function $X(\omega)$.
- (d) Calculate $S(\omega)$ in terms of $X(\omega)$.
- (e) Sketch $S(\omega)$.
- (f) Calculate $Z(\omega)$ in terms of $X(\omega)$.
- (g) Calculate $Z(\omega)$ in terms of $X(\omega)$ assuming that $H(\omega) = Trect(T\omega/(2\pi))$.
- (h) Sketch $Z(\omega)$ assuming that $H(\omega) = Trect(T\omega/(2\pi))$.