EE 301 Homework 1

1. Complex numbers.

(a) Express the following complex numbers in *polar* form

i.
$$z_1 = 2 + j\sqrt{3}$$
 ii. $z_2 = \frac{1+j}{2+3j}$ iii. $z_3 = (1+j)^*$

(b) Express the following complex numbers in rectangular form

i.
$$z_1 = e^{2jp/3}$$
 ii. $z_2 = e^{jp/3} + 2e^{2jp/3}$ iii. $z_3 = (e^{-jp})^{1/2}$

2. **Fundamental periods**. Determine if the following signals are periodic. For those that are periodic calculate the fundamental period.

(a)
$$x(t) = \cos(2\mathbf{p}t/3) + \sin(5t + \mathbf{p}/3)$$

(b) $x[n] = e^{j2n}$
(c) $x(t) = \sin(\mathbf{p}t/3) - 3\cos(5\mathbf{p}t/2 + \mathbf{p}/4) + 2e^{j(3\mathbf{p}/4+5)}$
(d) $x[n] = e^{j(\mathbf{p}/4)n} e^{j(\mathbf{p}/8)n}$

3. Energy and Power. Calculate the energy and power for the following signals.

(a)
$$x(t) = e^{-2jt}$$
 (b) $x(t) = \cos(3t)$

(c)
$$x(t) = e^{-5t} \sin(2t)u(t)$$
 (d) $x[n] = e^{2n}u[n]$ (Use the formula $\sum_{n=0}^{N} a^n = \frac{1-a^{N+1}}{1-a}$)

- 4. **Properties of periodic functions.** State whether each of the following statements is true or false. If the statement is true, prove your assertion with a brief argument. If it is false, provide a counter example.
 - 1. If x(t) is periodic then so is x(-t).
 - 2. The sum of two periodic signals is always periodic.
 - 3. The signal $x(t) = \sum_{k=-\infty}^{\infty} y(t-kT)$ where y(t) is any function such that $\int_{-\infty}^{\infty} |y(t)| dt < \infty$.
 - 4. The signal x(t) = 0

MATLAB Exercises

1. Plot the following discrete-time signal for $-10 \le n \le 10$, using the *stem* function. Make sure both axes are properly labeled.

$$x[n] = (0.8)^n \sin\left(\frac{2\mathbf{p}n}{3}\right)$$

2. Plot the following continuous-time signal for $0 \le t \le 10$ using the *plot* function. Make sure both axes are properly labeled.

$$x(t) = \sin\left(\frac{3\mathbf{p}t}{5}\right) + \cos\left(\frac{2t}{3}\right)$$