Course Outline

EE301: Signals and Systems

I. Introduction

- A. Review of course policies
- B. Why linear systems theory is important

II. Signals [OW 1.0-1.4]

- A. Types continuous time, discrete time, and digital [OW 1.0-1.1]
- B. Transformations of the independent variable [OW 1.2]
 - 1. Time reversal
 - 2. Time delay
 - 3. Time scaling
- C. Signal Properties
 - 1. Periodic signals
 - 2. Even/odd signals
 - 3. Energy
 - 4. Power
 - 5. Average value
- D. Exponential Signals [OW 1.3]
 - 1. Continuous time
 - 2. Discrete time
- E. Impulse and step functions [OW 1.4]
 - 1. Discrete time
 - a. Relationship between impulse and step functions
 - b. Representation of DT signals with DT impulses (Sifting Prop.)
 - 2. Continuous time
 - a. Definition of CT impulse [OW 2.5]
 - b. Relationship between impulse and step functions
 - c. Representation of CT signals with CT impulses (Sifting Prop.)

III. Systems [OW 1.5-1.6]

- A. Input/output models for systems [OW 1.5]
- B. System Properties [OW 1.6]
 - 0. Review of formal logic [From notes/handouts]
 - 1. Continuous time and Discrete time systems
 - 2. Causal and noncausal systems
 - 3. Memory and memoryless systems
 - 4. Linear and nonlinear systems
 - 5. Time varying and time invariant systems
 - 6. Stable and unstable systems
 - 7. Formal definitions of system properties

IV. Linear Time-Invariant Systems [OW 2.0-2.4]

- A. Time domain analysis of linear systems [OW 2.0]
 - 1. Discrete time systems [OW 2.1]
 - a. impulse function and impulse response

- b. discrete time convolution
- 2. Continuous time [OW 2.2]
 - a. impulse function and impulse response
 - b. continuous time convolution
- B. Properties for LTI systems [OW 2.3]
 - 1. Memoryless
 - 2. Causal and anticausal
 - 3. Stable
- C. LTI analysis of linear differential equations [OW 2.4]]
- D. Complex exponential inputs to LTI systems [OW 3.2]

V. Frequency Analysis

- A. Orthonormal Tranforms [From notes]
 - 1. General analysis of orthonormal transformations
 - 2. Functions as vectors
 - 3. Innerproducts on functions
 - 4. Parseval's theorem for orthonormal transforms
- B. Continuous time Fourier series (CTFS) [OW 3.0-3.3,3.5,3.8-3.9]
 - 1. Derivation as orthogonal transform [OW 3.0-3.3]
 - 2. CTFS examples
 - 3. Properties of CTFS [OW 3.5]
 - 4. LTI system analysis using CTFS [OW 3.8,3.9]
- C. Overview of transforms we will cover [From notes and handout]
- D. Continuous time Fourier transform (CTFT) [OW 4.0-4.8]
 - 1. Derivation of tranform [OW 4.0-4.1]
 - 2. The convolution property and LTI systems [OW 4.4]
 - 3. CTFT properties [OW 4.3]
 - 4. Transform pairs for aperiodic signals [See OW 4.6]
 - 5. CTFT of periodic functions [OW 4.2]
 - 6. Transform pairs for periodic signals [See OW 4.6]
 - 7. Impulse train sampling [OW 7.1.1]
 - 8. Systems characterized by linear differential equations [OW 4.7]
- E. The DFT [OW 3.6-3.7]
 - 1. Derivation as orthogonal transform [From notes and OW 3.6]
 - 2. Example transforms
 - 3. DFT properties and circular convolution [OW 3.7]
- F. Discrete time Fourier transform (DTFT) [OW 5.0-5.1,5.3-5.6,5.8]
 - 1. Tranform definition [OW 5.0,5.1]
 - 2. DTFT properties [OW 5.3]
 - 3. Transform pairs [See OW 5.6]
 - 4. The convolution property and LTI systems [OW 5.4]
 - 8. Systems characterized by linear difference equations [OW 5.8]
- VI. Sampling and reconstruction [From Notes, OW Chapter 7]
 - A. Overview of sampling systems [OW 7.0]
 - B. Sampling
 - 1. Relationship between CTFT and DTFT

- 2. Aliasing and the Nyquist frequency
- C. Reconstruction
 - 1. Relationship between DTFT and CTFT
 - 2. Aliasing and reconstruction filters
 - 3. Zero order sample and holds

VII. (Didn't get to this) The Z-Transform [OW 10.0-10.7]

- A. Definition of Z-transform
- B. Region of convergence
- C. The inverse Z-transform
- D. More on the Z-transform
 - 1. Left and right hand signals
 - 2. Stable and unstable signals
 - 3. Causal and anticausal signals
 - 4. Z-transform properties
- E. Analysis of DT systems
 - 1. FIR systems
 - 2. IIR systems
 - 3. Stability analysis

[OW] - Refers to Oppenheim and Willsky text