EE301 Homework #10: Sampling and Reconstruction

Problem 1 - Computing CTFT Transforms

For each of the following functions, compute the CTFT then sketch the function x(t) and its Fourier transform $X(\omega)$. (Hint: Use CTFT property 12 from notes.)

a)
$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - k/2)$$

b)
$$x(t) = \operatorname{sinc}(t) \sum_{k=-\infty}^{\infty} \delta(t - k/2)$$

c)
$$x(t) = \operatorname{sinc}(t) \sum_{k=-\infty}^{\infty} \delta(t-k)$$

Problem 2 - Sampling and DTFT's

Consider the functions

$$y(n) = x(nT)$$

For each example, i) sketch x(t), ii) calculate $X(\omega)$ the CTFT of x(t), iii) sketch $|X(\omega)|$, iv) sketch y(n), v) calculate $Y(\omega)$ the DTFT of y(n), vi) sketch $|Y(\omega)|$, vii) indicate if there is aliasing.

(a)
$$x(t) = (\text{sinc}(t))^2$$
 and $T = 3/8$.

(b)
$$x(t) = (\text{sinc}(t))^2$$
 and $T = 1/2$.

(c)
$$x(t) = (\text{sinc}(t))^2$$
 and $T = 5/8$.

Problem 3 - Sampling and Reconstruction

A signal x(t) is sampled at period T to form y(n).

$$y(n) = x(nT)$$

The signal y(n) is then used as the input to an impulse generator to form s(t).

$$s(t) = \sum_{k=-\infty}^{\infty} y(n)\delta(t - kT)$$

The signal s(t) is then filtered to form the final output z(t) using the filter $H(\omega)$.

- (a) Sketch a general function $|X(\omega)|$ which is bandlimited to $|\omega| < \frac{\pi}{T}$.
- (b) Calculate $Y(\omega)$ in terms of $X(\omega)$.
- (c) Sketch $|Y(\omega)|$ for a typical function $X(\omega)$.

- (d) Calculate $S(\omega)$ in terms of $X(\omega)$.
- (e) Sketch $|S(\omega)|$.
- (f) Calculate $Z(\omega)$ in terms of $X(\omega)$.
- (g) Calculate $Z(\omega)$ in terms of $X(\omega)$ assuming that $H(\omega) = T \operatorname{rect} (T\omega/(2\pi))$
- (h) Sketch $|Z(\omega)|$ assuming that $H(\omega) = T \mathrm{rect}\left(T\omega/(2\pi)\right)$

Problem 4 - Sampling and reconstruction

Consider a sampling system

$$y(t) = x(t) \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

where T=1 and x(t) is a function that is band-limited to $|\omega|<\pi$. Then, consider the signal

$$z(t) = y(t) * h(t)$$

where $h(t) = \operatorname{sinc}(t)$.

- (a) Determine $Y(\omega)$ in terms of $X(\omega)$.
- (b) Sketch $Y(\omega)$ for a typical function $X(\omega)$.
- (c) Determine and sketch $H(\omega)$.
- (d) Determine $Z(\omega)$ in terms of $X(\omega)$.
- (e) Sketch $Z(\omega)$ for a typical function $X(\omega)$.
- (f) Determine z(t) in terms of x(t).