Name: \qquad
Instructions:

- Follow all instructions carefully!
- This is a 50 minute exam containing four problems totaling 100 points.
- You may not use a calculator.
- You may not use any notes, books or other references.
- You may only keep pencils, pens and erasers at your desk during the exam.

Good Luck.

Fact Sheet

- Function definitions

$$
\begin{gathered}
\operatorname{rect}(t) \triangleq \begin{cases}1 & \text { for }|t|<1 / 2 \\
0 & \text { otherwise }\end{cases} \\
\Lambda(t) \triangleq \begin{cases}1-|t| & \text { for }|t|<1 \\
0 & \text { otherwise }\end{cases} \\
\\
\operatorname{sinc}(t) \triangleq \frac{\sin (\pi t)}{\pi t}
\end{gathered}
$$

- Continuous Time Fourier Series (CTFS)

$$
\begin{aligned}
a_{k} & =\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) e^{-j k \frac{2 \pi}{T} t} d t \\
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k \frac{2 \pi}{T} t}
\end{aligned}
$$

- CTFS Properties

$$
x\left(t-t_{o}\right) \stackrel{C T F S}{\Leftrightarrow} a_{k} e^{-j k \frac{2 \pi}{T} t_{o}}
$$

For $x(t)$ real valued $a_{k}=a_{-k}^{*}$

$$
\begin{gathered}
\frac{d x(t)}{d t} \stackrel{C T F S}{\Leftrightarrow} j k \frac{2 \pi}{T} a_{k} \\
x(t)=\int_{-T / 2}^{T / 2} x(\tau) y(t-\tau) d \tau \stackrel{C T F S}{\Leftrightarrow} T a_{k} b_{k} \\
x(t) y(t) \stackrel{C T F S}{\Leftrightarrow} \sum_{l=-\infty}^{\infty} a_{l} b_{k-l} \\
\frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t=\sum_{k=-\infty}^{\infty}\left|a_{k}\right|^{2}
\end{gathered}
$$

- CTFT

$$
\begin{aligned}
X(\omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega
\end{aligned}
$$

- CTFT Properties

$$
\begin{gathered}
x(-t) \stackrel{C T F^{T}}{\Leftrightarrow} X(-\omega) \\
x\left(t-t_{0}\right) \stackrel{C T F T}{\Leftrightarrow} X(\omega) e^{-j \omega t_{0}} \\
x(a t) \stackrel{C T F T}{\Leftrightarrow} \frac{1}{|a|} X(\omega / a) \\
X(t) \stackrel{C T F T}{\Leftrightarrow} 2 \pi x(-\omega) \\
x(t) e^{j \omega_{0} t} \stackrel{C T F^{T}}{\Leftrightarrow} X\left(\omega-\omega_{0}\right)
\end{gathered}
$$

$$
\begin{gathered}
x(t) y(t) \stackrel{C T F T}{\Leftrightarrow} \frac{1}{2 \pi} X(\omega) * Y(\omega) \\
x(t) * y(t) \stackrel{C T F T}{\Leftrightarrow} X(\omega) Y(\omega) \\
\frac{d x(t)}{d t} \stackrel{C T F T}{\Leftrightarrow} j \omega X(\omega) \\
\int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\omega)|^{2} d \omega \\
\text { If } x(t) \stackrel{C T F S}{\Leftrightarrow} a_{k} \text { then } \\
x(t) \stackrel{C T F}{\Leftrightarrow} \sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta(\omega-2 \pi k / T)
\end{gathered}
$$

- CTFT pairs

$$
\begin{aligned}
& \operatorname{sinc}(t) \stackrel{C T F T}{\Leftrightarrow} \operatorname{rect}(\omega /(2 \pi)) \\
& \operatorname{rect}(t) \stackrel{C T F T}{\Leftrightarrow} \operatorname{sinc}(\omega /(2 \pi))
\end{aligned}
$$

For $a>0$

$$
\begin{gathered}
\frac{1}{(n-1)!} t^{n-1} e^{-a t} u(t) \stackrel{C T F T}{\Leftrightarrow} \frac{1}{(j \omega+a)^{n}} \\
\sum_{k-\infty}^{\infty} \delta(t-k T) \stackrel{C T F T}{\Leftrightarrow} \frac{1}{T} \sum_{k-\infty}^{\infty} 2 \pi \delta(\omega-2 \pi k / T)
\end{gathered}
$$

- DFT

$$
\begin{aligned}
X_{k} & =\frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N} \\
x(n) & =\sum_{k=0}^{N-1} X_{k} e^{j 2 \pi k n / N}
\end{aligned}
$$

- DTFT

$$
\begin{aligned}
X(\omega) & =\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n} \\
x(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{j \omega n} d \omega
\end{aligned}
$$

- DTFT pairs

$$
a^{n} u(n) \stackrel{D T F^{T}}{\Leftrightarrow} \frac{1}{1-a e^{-j \omega}}
$$

- Sampling and Reconstruction

$$
\begin{aligned}
y(n) & =x(n T) \\
Y(\omega) & =\frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(\frac{\omega-2 \pi k}{T}\right) \\
s(t) & =\sum_{k=-\infty}^{\infty} y(k) \delta(t-k T) \\
S(\omega) & =Y(\omega T)
\end{aligned}
$$

Name:
Problem 1.(25pt) Formal Logic
Consider the function $x(t)$ for $t \in \Re$.
We say that the function $x(t)$ is bounded if there exists an $M \in \Re$ such that for all $t \in \Re$, $|x(t)| \leq M$.
Alternatively, we say that a function $x(t)$ is unbounded if it is not bounded.
a) Give a formal logical expression for the definition of bounded.
b) Give a formal logical expression for the definition of unbounded.
c) Prove that the function $x(t)=e^{t}$ is either bounded or unbounded.

Name:

Name:
Problem 2.(25pt) System Properties
For each of the following continuous-time systems with input $x(t)$ and output $y(t)$, prove or disprove that it is i) linear; ii) time-invariant; iii) BIBO stable.
a) $y(t)=e^{t} x(t)$
b) $y(t)=e^{x(t)}$
c) $y(t)=\int_{0}^{t} x(\tau) d \tau$

Name:

Name:
Problem 3.(25pt) Impulse Response
Let $y(n)=S[x(n)]$ be an LTI discrete-time system with input $x(n)$ and output $y(n)$.
a) Prove that

$$
x(n)=\sum_{k=-\infty}^{\infty} x(k) \delta(n-k)
$$

(Hint: The easiest approach is to just apply the definition of $\delta(n)$.)
b) Prove that

$$
y(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k)
$$

where $h(n) \triangleq S[\delta(n)]$. Justify each step of your proof.

Name:

Name:
Problem 4.(25pt) Difference Equations
Consider the discrete time system $y(n)=S[x(n)]$, which is governed by the difference equation

$$
y(n)=a y(n-1)+x(n)
$$

where $x(n)$ is the input and $y(n)$ is the output.
It can be proven that this is a LTI system. So for the remainder of the problem, you may assume this is true.
a) Verify that if $x(n)=\delta(n)$ then $y(n)=a^{n} u(n)$.
b) For what values of a is the system BIBO stable?
c) Express the output, $y(n)$, as an explicit function of the input, $x(n)$.
d) Calculate the output, $y(n)$, when $x(n)=u(n)$.

Name:

Name:

