Uncertain Geometry for Image Analysis

Wolfgang Förstner

University of Bonn

Purdue, 20. March 2008
Geometric Tasks in Image Analysis
Real Images with image features
Grupping of image features

Aggregating individual features to larger entities:

- Aggregating edge pixels to edges
- Concatenation of edges
- Aggregating regions to larger ones
- Aggregating symmetric parts
Example: Aggregating edge points

Given: edge points $x_n, n = 1, \ldots, N$
Unknown: edge (y, z)

Method:
1. Determining fitting line l
2. Determining starting and end point $y \in l$ und $z \in l$
Questions:

- Do all points belong to edge?
- How accurate is line?
- How accurate are end points?
Determination of 3D-structures from image structures

Reconstruction of 3D-objects from image information

- Surfaces
- Polyhedra
- Zylinders
- 3D-Lines
Example: Forward intersection with points and lines

Observed: Image points and lines in 4 images
Given: Orientation data of images 1 to 4
Unknown: 3D-Coordinates of point
Method:
1. Determination of approximate values
2. Optimal estimation

Questions:
- Are Observations consistent?
- How accurate is result?
- What effect do errors in correspondence have?
Orientation of cameras

Determination of pose of camera at time of exposure

- Single cameras
- Multiple cameras
 - Aerial images (50 to 20000)
 - Video sequences (≥ 1500/min)
- with and without knowledge of calibration
Example: Orientation of camera from points and lines
Given: 3D-points and 3D-lines, straight line preserving mapping
Observed: Image points and lines
Unknown: Orientation and Calibration of single camera
Method:

1. Check of observations
2. Determination of approximate values
3. Optimal Estimation

Questions (as above)

▶ Are observations consistent?
▶ How accurate is the result?
▶ What effect have correspondence errors onto the result?
Types of tasks

- Determination of geometric entities
 Intersection point, projection ray, ...

- Check of constraints
 Collinearity, Consistency, ...

- Estimation of parameters
 of lines, orientations, ...

under uncertainty
Types of uncertainty

- Unavoidable random deviations can be modeled stochastically, approximately Gaussian

- Calibration errors: systematic, model errors, small deterministic or stochastic

- Occlusions: Missing points, parts of edges, parts of regions systematic, model errors, large: may be modeled stochastically

- Correspondence errors, identification errors, detection errors large, not systematic: may be modeled stochastically

- Distribution of image features may be modeled stochastically
Representation of Geometry
Geometric image features

Simple entities:

- distinct points, positions, ...
- straight image edges, -lines
- straight edge segments, line segments
Representation in homogeneous coordinates distinct points, postions, ...

\[\mathbf{x} : \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = w \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x_0 \\ x_h \end{bmatrix} \]

with Euclidean coordinates
straight edges

$$l : \quad 1 = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \frac{1}{a^2 + b^2} \begin{bmatrix} \cos \phi \\ \sin \phi \\ -s \end{bmatrix} = \begin{bmatrix} l_h \\ l_0 \end{bmatrix}$$

with normal \([\cos \phi, \sin \phi]^T\) and distance \(s\) to origin
straight edge segment, line segment

$$s : \quad (u, v) \leftrightarrow (k, m, n)$$

starting and end point \(u\) und \(v\)
or
line \(k\) and limiting lines \(m\) und \(n\)
Simple entities:

- Distinct points, corner, nodes, ...
- Straight lines
- Planes
- Straight edge segments, line segments
Representation in homogeneous Coordinates
Distinct points, corner, nodes, ...

\[\mathbf{X} : \quad \mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} = \begin{bmatrix} U \\ V \\ W \\ T \end{bmatrix} = T \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} X_0 \\ X_h \end{bmatrix} \]
Planes

\[A : \quad A = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix} = \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} = \sqrt{A^2 + B^2 + C^2} \begin{bmatrix} N \\ -S \end{bmatrix} = \begin{bmatrix} A_h \\ A_0 \end{bmatrix} \]

with normal \(N \) and distance \(S \) from origin \(x \)
straight lines: Plücker-Coordinates

\[L : \mathbf{L} = \begin{bmatrix} L_1 \\ L_2 \\ L_3 \\ L_4 \\ L_5 \\ L_6 \end{bmatrix} = \begin{bmatrix} L_h \\ L_0 \end{bmatrix} \]
linear as join of two points

\[\chi \left(\begin{bmatrix} X \\ 1 \end{bmatrix} \right) \quad \gamma \left(\begin{bmatrix} Y \\ 1 \end{bmatrix} \right) \]

\[\mathcal{L} = \chi \wedge \gamma : \quad \mathbf{L} = \begin{bmatrix} \mathbf{Y} - \mathbf{X} \\ \mathbf{X} \times \mathbf{Y} \end{bmatrix} = \Pi(\mathbf{X}) \mathbf{Y} = -\Pi(\mathbf{Y}) \mathbf{X} \]

with \(6 \times 4 \)-matrix \(\Pi(\mathbf{X}) \), depending on \(\mathbf{X} \)
Pi-Matrix

\[\Pi(X) = \begin{bmatrix} X_4 & 0 & 0 & -X_1 \\ 0 & X_4 & 0 & -X_2 \\ 0 & 0 & X_4 & -X_3 \\ 0 & -X_3 & X_2 & 0 \\ X_3 & 0 & -X_1 & 0 \\ -X_2 & X_1 & 0 & 0 \end{bmatrix} \]

Plückermatrix

\[\Gamma(L) = \begin{bmatrix} 0 & L_6 & -L_5 & -L_1 \\ -L_6 & 0 & L_4 & -L_2 \\ L_5 & -L_4 & 0 & -L_3 \\ L_1 & L_2 & L_3 & 0 \end{bmatrix} \]

\[\Gamma(X \land Y) = X Y^T - Y X^T \]
linear as intersection of two planes

\[L = A \cap B : \quad L = \Pi(A) B = -\Pi(B) A \]

with 6×4-matrix $\Pi(X)$, depending on X

\[\Pi(A) = D_6 \Pi(A) \]

Matrix for dualling lines (exchanging first and second triplets of rows)

\[D_6 = \begin{bmatrix} 0 & I_3 \\ I_3 & 0 \end{bmatrix}_{6 \times 6} \]

dual Plücker matrix

\[\Gamma(L) = \begin{bmatrix} 0 & L_3 & -L_2 & -L_4 \\ -L_3 & 0 & L_1 & -L_5 \\ L_2 & -L_1 & 0 & -L_6 \\ L_4 & L_5 & L_6 & 0 \end{bmatrix} \quad \Gamma(A \cap B) = AB^T - BA^T \]
- Straight lines segments

\[S(U, V) \leftrightarrow S(\mathcal{M}, \mathcal{B}, \mathcal{C}) \]

starting and end point \(U \) und \(V \)
or
line \(\mathcal{M} \) and limiting planes \(\mathcal{B} \) and \(\mathcal{C} \)
straight line preserving mappings: projectivities, homographies
straight line preserving planar mapping

\[
\mathbf{x}' = H \mathbf{x}
\]

8 degrees of freedom: translation (2), rotation (1), scale (1),
affinity (2), projektivity (2)
straight line preserving spatial mapping

\[
X' = H X
\]

15 degrees of freedom: translation (3), rotation (3), scale (3), affinity (3), projektivity (3)
Special properties of homogeneous entities

distance to origin:

\[d_{xO} = \frac{|x_0|}{|x_h|} \quad d_{lO} = \frac{|l_0|}{|l_h|} \quad d_{XO} = \frac{|X_0|}{|X_h|} \quad d_{LO} = \frac{|L_0|}{|L_h|} \quad d_{AO} = \frac{|A_0|}{|A_h|} \]

entities at infinity: if homogeneous part is 0

2D:

\[x_\infty : \begin{bmatrix} x_0 \\ 0 \end{bmatrix} \quad l_\infty : \begin{bmatrix} 0 \\ 1 \end{bmatrix} \]

3D:

\[X_\infty : \begin{bmatrix} X_0 \\ 0 \end{bmatrix} \quad L_\infty : \begin{bmatrix} L_0 \\ 0 \end{bmatrix} \quad A_\infty : \begin{bmatrix} 0 \\ 1 \end{bmatrix} \]
Projection of 3D-object-point \(X \) to 2D-image points:

\[
x'_3 = P_{3\times4} X_{3\times1}
\]

with projection matrix

\[
P_{3\times4} = [p_{ij}] = \begin{bmatrix} A^T \\ B^T \\ C^T \end{bmatrix} = [p_1, p_2, p_3, p_4]
\]

- \(A \) are planes of coordinate system of camera \(S_c \)
- \(p_i \) = images of points at infinity of axes
- \(p_4 \) = image of origin
- \([p_{31}, p_{32}, p_{33}]^T\) = viewing direction
- null space = projection center
Mapping of 3D-line \mathcal{L} into image line ℓ'

$$l' = Q L$$

with projection matrix for lines

$$Q = \begin{bmatrix} M_1^T \\ M_2^T \\ M_3^T \end{bmatrix} = [q_1, q_2, q_3; q_4, q_5, q_6]$$

M_i is (dual) i-th coordinate axis
q_1 to q_3 = images of coordinate axes
q_4 to q_6 = image so coordinate lines at infinity
q_6 = image of horizon!
Back projection of points and lines

projection planes

\[A_{l'} = P^T l' \]

projection line

\[L_{x'} = \overline{Q}^T x' \]

with \(\overline{Q} = QD_6 \)

→ geometric constructions
2D

3D
Wolfgang Förstner Purdue, 20. March 2008 Uncertain Geometry for Image Analysis
<table>
<thead>
<tr>
<th>Construction</th>
<th>(c = U(a)b = V(b)a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l = \chi \wedge y)</td>
<td>(l = S(x)y = -S(y)x)</td>
</tr>
<tr>
<td>(\chi = l \cap m)</td>
<td>(x = S(l)m = -S(m)l)</td>
</tr>
<tr>
<td>(L = X \wedge Y)</td>
<td>(L = \Pi(X)Y = -\Pi(Y)X)</td>
</tr>
<tr>
<td>(L = \mathcal{A} \cap B)</td>
<td>(L = \overline{\Pi}(A)B = -\overline{\Pi}(B)A)</td>
</tr>
<tr>
<td>(\mathcal{A} = L \wedge X)</td>
<td>(A = \Gamma(L)X = \overline{\Pi}^T(X)L)</td>
</tr>
<tr>
<td>(X = L \cap \mathcal{A})</td>
<td>(X = \overline{\Gamma}(L)A = \Pi^T(A)L)</td>
</tr>
<tr>
<td>(X \rightarrow \chi')</td>
<td>(x' = P \ X = (I_3 \otimes X^T) \ \text{vec}(P^T))</td>
</tr>
<tr>
<td>(L \rightarrow l')</td>
<td>(l' = Q \ L = (I_3 \otimes \overline{L}^T) \ \text{vec}(Q^T))</td>
</tr>
<tr>
<td>(\chi' \rightarrow L \chi')</td>
<td>(L_{x'} = \overline{Q}^T \ x' = (x'^T \otimes I_6) \ \text{vec}\overline{Q})</td>
</tr>
<tr>
<td>(l' \rightarrow \mathcal{A}_l')</td>
<td>(\mathcal{A}_{l'} = P^T \ l' = (l'^T \otimes I_4) \ \text{vec}P)</td>
</tr>
</tbody>
</table>
Uncertain Geometric Reasoning
Assumption:
Usefulness of homogeneous representation
Extension of representation by uncertainty
Uncertainty of Homogeneous Vectors

Principle:

- Euclidean entity \(\mathbb{R}^n \)
- Projective entity \(\mathbb{P}^n \)
- Homogeneous coordinates \(\mathbb{R}^{n+k} \)

- Euclidean entity \(\mathbb{R}^m \)
- Projective entity \(\mathbb{P}^m \)
- Homogeneous coordinates \(\mathbb{R}^{m+l} \)

- Simple, rigorous/approximate
- Difficult
- Simple, approximate
What is uncertainty of points in homogeneous coordinates?

Equivalence classes (arbitrary scaling)

\[p(x) \equiv p(y) \quad \text{iff} \quad x = \lambda y \]

projective points in \(\mathbb{P}^n \) are straight lines through \(O \) in \(\mathbb{R}^{n+1} \)
Uncertainty of a straight line?
Uncertainty of a direction?
Uncertainty of direction in plane
v. Mises distribution, uncertainty of direction vector
Uncertain directions in \mathbb{R}^3
uncertain points x and lines l in the plane (2 d. o. f.) →

$$\begin{bmatrix} x & \Sigma_{xx} \\ 3 \times 1 & 3 \times 3 \end{bmatrix} \quad \begin{bmatrix} l & \Sigma_{ll} \\ 3 \times 1 & 3 \times 3 \end{bmatrix}$$

uncertain points X, lines L and planes A in space (3, 4, and 3 d. o. f.) →

$$\begin{bmatrix} X & \Sigma_{XX} \\ 4 \times 1 & 4 \times 4 \end{bmatrix} \quad \begin{bmatrix} L & \Sigma_{LL} \\ 6 \times 1 & 6 \times 6 \end{bmatrix} \quad \begin{bmatrix} A & \Sigma_{AA} \\ 4 \times 1 & 4 \times 4 \end{bmatrix}$$

uncertain projection parameters (11 d. o. f.)

$$\begin{bmatrix} p & \Sigma_{pp} \\ 12 \times 1 & 12 \times 12 \end{bmatrix} \quad \begin{bmatrix} q & \Sigma_{qq} \\ 18 \times 1 & 18 \times 18 \end{bmatrix}$$
uncertain construction (bilinear)

\[c = U(a)b = V(b)a \]

then

\[\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{bmatrix} \rightarrow [c, \Sigma_{cc}] \]

\[\Sigma_{cc} = U(a)\Sigma_{bb}U^T(a) + V(b)\Sigma_{ab}U^T(a) + U(a)\Sigma_{ba}V^T(b) + V(b)\Sigma_{aa}V^T(b) \]

simple error propagation independent on distribution

Degree of approximation: relative bias in \(\mu \) and \(\sigma^2 \) = directional uncertainty
Testing Geometric Relations

Example: Testing Identity of Two 2D-points

Test of \(x = y \)

Classical procedure

Difference:

\[
d = y - x \sim N(\mu_d, \Sigma_{dd}) = N(\mu_y - \mu_x, \Sigma_{xx} + \Sigma_{yy})
\]

Test of

\[
H_0 : \mu_d = 0 \quad H_a : \mu_d \neq 0
\]

Test statistic

\[
T = d^T \Sigma_{dd}^{-1} d \sim \chi^2_2
\]

Problem: too complex for general geometric relations
General procedure
'Difference': line 1 generated by x and y is not defined, thus $1 = 0$

\[\mathbf{d}|_{H_0} = \mathbf{x} \times \mathbf{y}|_{H_0} \sim N(\mathbf{0}, \Sigma_{dd}) \]

\[\Sigma_{dd} = S(\mu_x) \Sigma_{yy} S^T(\mu_x) + S(\mu_y) \Sigma_{xx} S^T(\mu_y) \]

Problems:
- μ_x and μ_y not known
- number of elements in \mathbf{d} too large, depending on constraints

Solution:
+ Use $\hat{\mu}_x = x$ and $\hat{\mu}_y = y$ as approximations
+ Select independent constraints (cf. above)
Discussion:
+ simple
+ fast
+ very good approximation if test is not rejected
+ approximate test statistic increases monotonically with rigorous one

0 Conditioning and Normalization necessary to reduce bias
— only approximation if test is rejected
Normalization only of covariance matrix, no scaling necessary
1. determine the difference d, d, D or D (cf. tables 3, 2).
2. select r independent constraints
3. determine the covariance matrix Σ_{dd} of the r selected elements d of differences
4. determine the test statistic T

$$T = d^T \Sigma_{dd}^+ d \sim \chi^2_r$$

5. choose a significance number α
 compare T with the critical value $\chi^2_{r,\alpha}$.
 If $T > \chi^2_{r,\alpha}$ then reject hypothesis on relation
<table>
<thead>
<tr>
<th>No.</th>
<th>2D-entities</th>
<th>relation</th>
<th>dof</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(x, y)</td>
<td>(x \equiv y)</td>
<td>2</td>
<td>(d = S(x)y = -S(y)x)</td>
</tr>
<tr>
<td>2</td>
<td>(x, l)</td>
<td>(x \in l)</td>
<td>1</td>
<td>(d = x^Tl = l^Tx)</td>
</tr>
<tr>
<td>3</td>
<td>(l, m)</td>
<td>(l \equiv m)</td>
<td>2</td>
<td>(d = S(l)m = -S(m)l)</td>
</tr>
</tbody>
</table>

Tabelle: shows 3 relationships between points and lines useful for 2D grouping, together with the degree of freedom and the essential part of the test statistic.
<table>
<thead>
<tr>
<th>No.</th>
<th>3D-entities</th>
<th>relation</th>
<th>dof</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>X, \mathcal{Y}</td>
<td>$X \equiv \mathcal{Y}$</td>
<td>3</td>
<td>$D = \Pi(X)Y = -\Pi(Y)X$</td>
</tr>
<tr>
<td>5</td>
<td>X, L</td>
<td>$X \in L$</td>
<td>2</td>
<td>$D = \overline{\Pi}^T(X)L = \overline{\Gamma}^T(L)X$</td>
</tr>
<tr>
<td>6</td>
<td>X, A</td>
<td>$X \in A$</td>
<td>1</td>
<td>$d = X^TA = A^TX$</td>
</tr>
<tr>
<td>7</td>
<td>L, M</td>
<td>$L \equiv M$</td>
<td>4</td>
<td>$D = \Gamma(L)\Gamma(M)$</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>$L \cap M \neq \emptyset$</td>
<td>1</td>
<td>$d = L^TM = M^TL$</td>
</tr>
<tr>
<td>9</td>
<td>L, A</td>
<td>$L \in A$</td>
<td>2</td>
<td>$D = \Pi^T(A)L = \Gamma^T(L)A$</td>
</tr>
<tr>
<td>10</td>
<td>A, B</td>
<td>$A \equiv B$</td>
<td>3</td>
<td>$D = \Pi(A)B = -\Pi(B)A$</td>
</tr>
</tbody>
</table>

Tabelle: shows 7 relationships between points, lines and planes useful for 3D grouping, together with the degree of freedom and the essential part of the test statistic.
<table>
<thead>
<tr>
<th>No.</th>
<th>entities</th>
<th>relation</th>
<th>dof</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x', $P(P)$, X</td>
<td>$x' \equiv P(X)$</td>
<td>2</td>
<td>$d = S(x')PX = 0$</td>
</tr>
<tr>
<td>2</td>
<td>ℓ', $P(P)$, L</td>
<td>$\ell' \equiv P(L)$</td>
<td>2</td>
<td>$D = \Gamma(L)P^T\ell' = 0$</td>
</tr>
<tr>
<td>3</td>
<td>X, Y, Z, T</td>
<td>coplanar</td>
<td>1</td>
<td>$d =</td>
</tr>
<tr>
<td>4</td>
<td>A, B, C, D</td>
<td>intersect</td>
<td>1</td>
<td>$d =</td>
</tr>
</tbody>
</table>

Tabelle: *shows 4 multi linear relationships together with the degree of freedom and the essential part of the test statistic.*
Grouping

Intermediate step:
Given: edge segment $s(x, y)$, point z
Unknown: Does $z \in s$ hold?
Tests with three lines \((l, m, n)\):

\[
z^T l = 0 \quad \text{sign} \left(\frac{z^T m}{|m_0|} \right) \neq \text{sign} \left(\frac{z^T n}{|n_0|} \right)
\]
Combined estimation of a 3D-line

\[
\begin{bmatrix}
 L_{11}'^T \\
 \Pi^T(A_{52}') \\
 L_{23}'^T \\
 \Pi^T(A_{54}')
\end{bmatrix}
\begin{bmatrix}
 x'_{11}^TQ_1 \\
 \Pi^T(P_{21}'_{52}) \\
 x'_{23}^TQ_3 \\
 \Pi^T(P_{41}'_{54})
\end{bmatrix}
\]

of \(A \rightarrow \hat{L}_5 \)

\(L_5 = A\hat{L}_5 = w = 0 \) SVD
Results and Outlook

Result
- Integration of geometry and uncertainty
- Homogeneous representation suited
- Software SUGR (statistically uncertain geometric reasoning) in JAVA available

Use
- Grouping of image and space features
- Reconstruction from images
- Reconstruction from laser range data

Open problems
- Limitations of approach
- Quality of reasoning for ling chains
- Integration of other types of uncertainties (Correspondence, grouping, ...)

Wolfgang Förstner Purdue, 20. March 2008
How can we determine the covariance matrix between different entities?

Example: Given three 3D-points \(X, Y\) and \(Z\), and a plane \(A\):

1. Determine lines

\[
L = X \wedge Y \quad M = X \wedge Z
\]

2. Determine fourth point

\[
T = L \cap A
\]

3. Determine plane

\[
B = M \wedge T
\]

Plane \(M \wedge T\) should be identical to plane \(X \wedge Y \wedge Z\).

Line \(M\) and point \(T\) both depend on \(X\): \(\Sigma_{MT} \neq 0\).

If covaraince \(\Sigma_{MT}\) is neglected, then \(D(M \wedge T) \neq D(X \wedge Y \wedge Z)\).
Construction of plane $\mathbf{B} = \mathbf{M} \wedge \mathbf{T}$ with $\mathbf{M} = \mathbf{X} \wedge \mathbf{Z}$ and $\mathbf{T} = \mathbf{A} \cap (\mathbf{X} \wedge \mathbf{Y})$
General setup:

Given:

– mutually independent vectors \((x, \Sigma_{xx}), (y, \Sigma_{yy})\) and \((z, \Sigma_{zz})\)

– linear functions

\[
\begin{align*}
 u &= Ax + Bb \\
 v &= Cx + Dc
\end{align*}
\]

The covariance matrix of \(u\) and \(v\) is given by:

\[
\Sigma_{uv} = A \Sigma_{xx} C^T
\]
Proof:

from

\[z = Et \]

with

\[
t = \begin{bmatrix}
 a \\
 b \\
 c
\end{bmatrix}
\]
\[
E = \begin{bmatrix}
 A & B & 0 \\
 C & 0 & D
\end{bmatrix}
\]
\[
z = \begin{bmatrix}
 u \\
 v
\end{bmatrix}
\]

we obtain

\[\Sigma_{zz} = E \Sigma_{tt} E^T \]

with

\[
\Sigma_{zz} = \begin{bmatrix}
 \Sigma_{uu} & \Sigma_{uv} \\
 \Sigma_{vu} & \Sigma_{vv}
\end{bmatrix} = \begin{bmatrix}
 A & B & 0 \\
 C & 0 & D
\end{bmatrix} \begin{bmatrix}
 \Sigma_{xx} & 0 & 0 \\
 0 & \Sigma_{yy} & 0 \\
 0 & 0 & \Sigma_{zz}
\end{bmatrix} \begin{bmatrix}
 A^T \\
 B^T \\
 C^T
\end{bmatrix}
\]