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Development of the Condition Equations 
for a Space Based Pushbroom Camera 

(Using SPOT as an Example)
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Development of SPOT Condition Equation – Good 
Model for Generic Pushbroom Camera from LEO
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tf: time at frame center, in header (metadata)
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Condition Equation cont’d.
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f: true anomaly

Construct Mb from 3 sequential rotations 
applied to XYZ (ECEF) to bring them 
parallel to xyz (instantaneous satellite 
system)
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Condition Equation, cont’d.

3 rotations needed to construct M
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When we make one rotation with respect to the 
sun (solar day) we have made more than one 
rotation with respect to the stars (sidereal day). 
i.e. solar day is longer than sidereal day. In fact, 
in one year there are 365.25 solar days, and 
366.25 sidereal days (one more)
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Condition Equation, cont’d.
Earth rotation rate (solar rate) is 2p radians per 24 hours, or 0.00007272205 rad/sec

Earth rotation rate (sidereal rate) is faster by factor of (366.25/365.25), or 0.00007292115 
rad/sec

From the point of view of an earth observing camera in orbit, the earth motion will be at 
the sidereal rate

The first rotation, about Z, puts X’ through the ascending node.
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The second rotation, about X’, puts Y’’ up into the orbit plane (i), then another 90 
degrees, so that it is normal to the orbit plane
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Condition Equation, cont’d.
The third rotation is about Y’’ and moves X’’’ through omega, f, and another 90 degrees so 
it is pointing in the instantaneous direction of motion of the satellite (tangent to the orbit)
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The composite rotation Mb is the product of these three elementary rotations

123b MMMM =

With the following relationships,
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Condition Equation, cont’d.
The XYZ obtained in this way will be only approximately correct and we must allow for 
refinements, modeled as second order polynomials of time:
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Likewise the attitude (orientation) produced by the prior rotation matrix will be only 
approximately correct and we must allow for refinements to the attitude, again modeled 
as second order polynomials of time:
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Condition Equation, cont’d.

We must also account for a tilt or inclination of the camera. In the case of SPOT this is a 
cross track tilt (+/- 27 degrees) about the x (motion) axis, implemented by a stationary (but 
moveable) mirror:  

We put these small refinement rotations into matrix as follows:

ωϕκ ∆∆∆= MMMMa
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In the case of an agile spacecraft such as IKONOS or Quickbird, this pointing can be 
any arbitrary cross-track, in-track, or spin attitude, and thus requires 3 rotations:

( ) ( ) ( )αβγ xyzt MMMM =
Note that we are over parameterized with rotations here. You cannot carry all as 
unknowns. But it may be convenient to separate in this way to make if clear which 
physical effect the parameter refers to.
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x

y

z

Direction of 
camera motion

Each line of a pushbroom camera is 
considered as a separate exposure, a 
“framelet”. As such, within each framelet, 
all points have an x-coordinate of zero. 
The image space vector becomes:
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Note, this “f” is a focal length (not true 
anomaly)
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Collecting all of this into the collinearity condition equation:
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We can also add some other inner orientation parameters such as 
lens distortion, principal point offset, etc.

So how many parameters do we have? There are 5 groups,

•Orbit parameters

•Position corrections

•Attitude corrections

•Pointing

•Inner orientation

(6) te,a,,i,, fωΩ
(9) Z,Z,Z,Y,Y,Y,X,X,X 210210210 δδδδδδδδδ

(9) ,,,,,,,, 210210210 δκδκδκδϕδϕδϕδωδωδω

(1) tα
(4) kf,,y,x 100

Total here is 29, some will be held constant (maybe at zero), we may 
add some. Stochastic treatment is guided by redundancy, geometric 
strength of figure (parameters known to be highly correlated will 
probably not both be carried as unknowns), and by uncertainties
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For SPOT we get an approximation of the off-nadir attitude from the 
angle readout of the mirror position. For Quickbird, we have the 
attitude described by quaternion elements, throughout the scene.
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Depending on the source of information about ground control points, 
we may need to do some prior transformations such as,
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Quickbird scene 
(0.6m pixel) over 
southwestern 
Indianapolis with 9 
“control points” 
determined with 
navigation grade GPS 
(3-5m uncertainty?)

We use these to 
exercise the resection 
operation and estimate 
some of the 
parameters just 
described.

Further possibilities: 
RPC’s, ortho-rectify, 
drape over terrain for 
visualizations
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Assignment will be put up by Monday for determining some 
subset(s) of the scene parameters using the given ephemeris data, the 
given control points, and a MATLAB m-file which implements the 
just described collinearity model for a generic pushbroom camera. 
(Read the product guide about basic imagery from the DG website, 
to help in interpretation of support data, and for info about the 
nominal/design orbit parameters) See spotres3.m and spotceq.m from 
the textbook software, these will be modified as needed for QB.

(No class Tuesday).

Optional task: determine the RPC coefficients for this scene and
compare to those provided by DG. Are the errors in the DG provided 
support data consistent with the published accuracy figures for “level 
1” or “basic” imagery?
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Conversion from Position & Velocity to Kepler Elements (Ref: See 
A. Leick, GPS Satellite Surveying)
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Based on the time associated with each 
ephemeris point, we can estimate/interpolate 
the values at the frame center. 


