

QuickBird Imagery Products

Product Guide

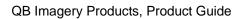


TABLE OF CONTENTS

	n	
	Satellite	
	rdering	
3.1 Quic	kBird Tasking Orders	6
3.1.1 C	ollection Feasibility	6
3.1.2 St	tandard Tasking	6
	riority Tasking	
	ush Tasking	
	geLibrary Ordering	
	ush ImageLibrary Delivery	
	er Polygon	
	elivery	
	Formats	
	very Options	
	ia	
]	
	very Timelines	
	Product Levels	
	c Imagery Products	
	pecification Table for Basic Imagery Products	
	dard Imagery Productsdard Imagery Products	
	pecification Table for Standard Imagery Products	
	parison of Basic, Standard, and Ortho Ready Standard Imagery	
5.4 Orth	orectified Imagery Products	22
	pecification Table for Orthorectified Imagery Products	
	ections and Datums	
	Imagery Product Options	
	k & White (Panchromatic) Products	
	spectral Products	
	dle (Black & White and Multispectral) Products	
	r Products (3-band)	
	sharpened Products (4-band)	
	amic Range Adjustment Option	
	aming	
	Support Data	
	File Description	
	Layout	
10.3 ISD	File Format	
10.3.1	PVL Format	
10.3.2	XML Format	
10.4 Deliv	ery Level ISD	
10.4.1	Delivery Index (Readme) Contents	35
10.4.2	Delivery Layout File	36
10.4.3	Delivery Shapefiles	
10.5 Prod	luct Component Level ISD	
10.5.1	Product Component Index (Readme)	
10.5.2	Image Metadata File	
10.5.3	Product Browse file	
10.5.4	Tile Map File	
10.5.5	Attitude File	
10.5.6	Ephemeris File	
10.5.7	Geometric Calibration File	
10.0.1	Comotio Calibration i lic	01

10.5.8 Rational Polynomial Coefficients	
10.5.9 Product Component XML File	
10.5.10 Manifest File	
11. ISD Coordinate Conventions	
11.1 Earth Coordinates (E)	
11.2 Spacecraft Coordinates (S)	
11.4 Detector Coordinates (D)	
11.5 Image Coordinates	
11.6 Time	
12. Appendix A - Abbreviations, Acronyms, and Terms	
LIST OF FIGURES	
Figure 1. Tile Naming	11
Figure 2. Tile Map Naming Example	
Figure 3. Panchromatic and Multispectral Basic Imagery Scene Characteristics	17
Figure 4. Final Product Structure for Sub-Scene Basic Imagery Products	
Figure 5. Final Product Structure for Multi-Scene Basic Imagery Products.	
Figure 6. Product Structure for Standard and Orthorectified Imagery Products within a single strip	
Figure 7. Product Structure for Standard and Orthorectified Imagery Products fulfilled from multiple s	
Figure 8. Product Structure for Orthomosaicked Imagery Products	
Figure 9. 4-band Pan-sharpened Product, Natural Color on the Left and Color Infrared on the Right.	
Figure 10. File Layout diagram	
Figure 11. Sample Delivery Layout File.	
Figure 12. Sample Product Browse File	
Figure 13. Earth Coordinate System	
Figure 14. Spacecraft Coordinate System	67
Figure 15. Camera Coordinate System	
Figure 16. Detector Coordinate System	
Figure 17. Image Coordinate System.	67
LIST OF TABLES	
Table 1. QuickBird Spacecraft Characteristics.	5
Table 2. QuickBird Tasking Types and Relative Priorities	
Table 3. Commercial Standard Tasking Parameters	
Table 5. Commercial Rush Tasking Parameters.	
Table 6. Example of the ASCII text file format	
Table 7. DigitalGlobe Supported Media	
Table 8. File Size of QuickBird Imagery Products at Different Tile Sizes	
Table 10. QuickBird Imagery Products and Associated Accuracies	
Table 11. Characteristics of Basic Imagery Products	
Table 12. Characteristics of Standard Imagery Products.	
Table 13. Characteristics of Orthorectified Imagery Products	
Table 14. DigitalGlobe Supported Map Projections, Ellipsoids, and Datums	
Table 15. The Relationship between Spectral Bands and Product Options	
Table 16. Possible Quality ratings for QuickBird Imagery Products in the DigitalGlobe ImageLibrary.	
Table 17. Product Naming Parameters	
Table 18 Imagery Licenses and Definitions.	
Table 19. Image Support Data (ISD) Files Delivered with Product Type.	
Table 20. Top Level Delivery Index (Readme) File	
Table 21. Shapefile Attributes	
Table 22. Floudict Component index (NEADINE) Contents	40

Table 23. ISD Image Metadata File	50
Table 24. ISD Tile Map File	59
Table 25. ISD Attitude File	
Table 26. ISD Ephemeris File.	
Table 27. ISD Geometric Calibration File.	
Table 28. ISD RPC00B File.	65
Table 29. Abbreviations and Acronyms.	67

1. Introduction

QuickBird Imagery Products offer customers a variety of options for accurate and timely imagery. DigitalGlobeTM offers QuickBird Imagery Products at three processing levels: (1) <u>Basic Imagery</u> with the least amount of processing (geometrically raw), designed for customers desiring to process imagery into a useable form themselves, (2) <u>Standard Imagery</u> with radiometric and geometric correction, and delivered in a map projection, and (3) <u>Orthorectified Imagery</u> with radiometric, geometric, and topographic correction, and delivered in a map projection. Please refer to Section 5 for more details about QuickBird Imagery Products.

In addition to processing levels, DigitalGlobe offers QuickBird Imagery Products in five product options: (1) Black & White (panchromatic) products enable superior visual analysis, (2) Multispectral products cover the visible and near-infrared wavelengths and are ideal for multispectral analysis, (3) Bundle (black & white and multispectral) products, (4) Color (3-band natural color or color infrared) products that combine the visual information of three multispectral bands with the spatial information of the panchromatic band, and (5) Pan-sharpened (4-band) that combines the visual information of all four multispectral bands with the spatial information of the panchromatic band. Please refer to Section 6 for more details about QuickBird Imagery Product options.

DigitalGlobe provides customers with flexibility in Product Levels, Ordering Options, Delivery Options, and Licensing Options. This document discusses, in detail, QuickBird Imagery Products and ordering options, including:

QuickBird Satellite: The QuickBird satellite collects the highest resolution imagery commercially available.

Product Ordering: The DigitalGlobe ImageLibrary allows customers to order previously collected imagery. If the customer's area of interest is not covered in the ImageLibrary, DigitalGlobe will task the image collection in one of three commercial tasking options.

Product Delivery: DigitalGlobe delivers its QuickBird Imagery Products to customers in industry standard image formats and media. Customers may receive their products via commercial delivery services or electronically via ftp (pull).

Product Levels: DigitalGlobe offers QuickBird Imagery Products in several processing and accuracy levels to suit customers' needs.

Product Options: DigitalGlobe offers products in a variety of multispectral options.

Product Naming: Product File Naming Conventions provide information about the acquisition of the QuickBird Imagery.

Product Licensing: DigitalGlobe licenses its imagery in a flexible manner to ensure that all personnel who need access to the imagery may use it.

Image Support Data: The metadata provided with QuickBird Imagery Products provides all the information needed to analyze and process imagery to the customer's specifications.

2. QuickBird Satellite

DigitalGlobe's QuickBird satellite provides the largest swath width, largest on-board storage, and highest resolution of any currently available or planned commercial satellite. QuickBird is designed to efficiently and accurately image large areas with industry-leading geolocational accuracy. The QuickBird spacecraft is capable of acquiring over 75 million square kilometers of imagery data annually (over three times the size of North America), allowing DigitalGlobe to populate and update its ImageLibrary at unprecedented speed.

QuickBird Characteristics					
Launch Date	October 18, 2001				
Launch Vehicle	Boeing Delta II				
Launch Location	Vandenberg Air Force Base, California				
Orbit Altitude	450 km				
Orbit Inclination	97.2 degree, sun-synchronous				
Speed	7.1 km/second				
Equator Crossing Time	10:30 a.m. (descending node)				
Orbit Time	93.5 minutes				
Revisit Time	1-3.5 days depending on latitude (30° off-nadir)				
Swath Width	16.5 km at nadir				
Metric Accuracy	23-meter horizontal (CE90%)				
Digitization	11 bits				
Resolution	Pan: 61 cm (nadir) to 72 cm (25° off-nadir) MS: 2.44 m (nadir) to 2.88 m (25° off-nadir)				
Image Bands	Pan: 725 nm Blue: 479.5 nm Green: 546.5 nm Red: 654 nm Near IR: 814.5 nm				

Note: maximum order polygon size for a single scene is approximately 14 km x 14 km

Table 1. QuickBird Spacecraft Characteristics.

3. Product Ordering

QuickBird products are either obtained directly from the DigitalGlobe ImageLibrary or by tasking the spacecraft. This section details the different tasking and ImageLibrary order types as well as the methods for specifying an order polygon.

3.1 QuickBird Tasking Orders

There are three Commercial Tasking options for QuickBird Imagery Products: Standard, Priority, and Rush. Tasking orders have single or multiple acquisition opportunities and customer-defined tasking parameters, depending on the tasking type selected. In addition, each tasking type has a priority level in relation to the other tasking types (see Table 2).

Tasking Type	Relative Priority
Commercial Standard	3
Commercial Priority	2
Commercial Rush	1

Table 2. QuickBird Tasking Types and Relative Priorities.

When preparing its collection plan, DigitalGlobe considers several factors, including order priority, date an order was received, the customer-specified collection window, and the cloud cover forecast. In rare instances, DigitalGlobe may pre-empt some orders due to collection efficiency and/or satellite calibration and maintenance. For Standard and Priority Tasking, the customer will be contacted prior to the end of the collection window to cancel the order or extend the collection window if the original tasking order was unsuccessful. Tables 3, 4, and 5 define commercial tasking options and defaults.

3.1.1 Collection Feasibility

All QuickBird Tasking Orders must pass two feasibility studies prior to acceptance of the order:

- <u>Physical Feasibility</u> assesses the number of times that QuickBird has physical access to
 your target based upon the parameters you provide. Items that affect physical feasibility
 include off-nadir angle (wider angles will have more accesses than narrow angles), latitude
 (QuickBird has increased access to locations at higher latitudes), collection windows (the
 larger the collection window, the more access QuickBird will have), and cloud cover
 forecast. Note that orders over a 30 degree off-nadir angle will require a special review.
- <u>Competitive Feasibility</u> assesses DigitalGlobe's ability to collect your order based upon other
 orders in the system. Items that affect competitive feasibility include orders already in the
 system and orders that have a higher relative priority (see Table 2).

3.1.2 Standard Tasking

- An order placed at least 48 hours before the start collect date.
- Customer specifies length of collection window up to 365 days. Collection window is subject
 to feasibility. DigitalGlobe suggests a 90 day collection window to ensure enough time to
 collect imagery that meets your specifications. Larger areas will require a longer collection
 window
- Unlimited number of collection attempts within the customer specified collection window, depending on off-nadir angle, latitude, competition, and length of collection window. A longer collection window will result in more physical collection opportunities and increased likelihood of a successful collect.
- Standard image processing.

Tasking Parameters - Standard Commercial		
Minimum Collection Area	1 scene for Basic Imagery 64km ² for Standard Imagery 100km ² for all Orthorectified Imagery Products	
Start Collection Date	>= 48 hours from order placement	Yes
End Collection Date	Customer specified number of days from Start Collection Date, up to 365 days from Start Collect 90 days recommended	Yes
Maximum Cloud Cover	20%	
Off-Nadir Angle	0° - 45° Basic, Standard, and Ortho Ready Standard Imagery 0° - 25° Orthorectified Imagery (1:50,000, 1:12,000, and Custom) 0° - 15° for Orthorectified Imagery (1:5000 and 1:4800)	Yes
Maximum Number of Acquisition Attempts	Limited only by length of the collection window and competition	
Sun Elevation	>= 15° (as collected)	
Sun Azimuth	0° - 360° (as collected)	
Target Azimuth	0° - 360° (as collected)	

 Table 3. Commercial Standard Tasking Parameters.

3.1.3 Priority Tasking

- An order placed at least 48 hours before the start collect date.
- Customer specifies length of collection window up to 365 days. Collection window is subject to feasibility.
- Unlimited number of collection attempts within the customer specified collection window, depending on off-nadir angle, latitude, competition, and length of collection window. A longer collection window will result in more physical collection opportunities and increased likelihood of a successful collect.
- Priority image processing.

Tasking Parameters - Priority Commercial		
Minimum Collection Area	1 scene for Basic Imagery 64km ² for Standard Imagery 100km ² for all Orthorectified Imagery Products	
Start Collection Date	>= 48 hours (2 days) from order placement	Yes
End Collection Date	Customer specified number of days from Start Collection Date, up to 365 days from Start Collect	Yes
Maximum Cloud Cover	20%	
Off-Nadir Angle	0° - 45° Basic, Standard, and Ortho Ready Standard Imagery 0° - 25° Orthorectified Imagery (1:50,000, 1:12,000, and Custom) 0° - 15° Orthorectified Imagery (1:5000 and 1:4800)	Yes
Maximum Number of Acquisition Attempts	Limited only by length of the collection window and competition	_
Sun Elevation	>= 15° (as collected)	
Sun Azimuth	0° - 360° (as collected)	
Target Azimuth	0° - 360° (as collected)	

Table 4. Commercial Priority Tasking Parameters.

3.1.4 Rush Tasking

- An order placed at least 24 hours before the start collect date.
- A collection window of 1 14 days.
- A single collection attempt.
- Basic and Standard Imagery only.
- · Rush image processing.

Tasking Param	Customer Selected	
Minimum Collection Area	Minimum Collection Area 1 scene for Basic Imagery 100km² for Standard Imagery	
Maximum Collection Area	2,500km ² (must be able to collect in a single pass)	
Start Collection Date	>= 24 hours from order placement	Yes
End Collection Date	1 to 14 days after Start Collection Date	Yes
Maximum Cloud Cover	20% to 100%	
Off-Nadir Angle	0° - 45°	Yes
Maximum Number of Acquisition Attempts	1	
Sun Elevation	>= 15° (as collected)	
Sun Azimuth	0° - 360° (as collected)	
Target Azimuth	0° - 360° (as collected)	

 Table 5. Commercial Rush Tasking Parameters.

3.2 ImageLibrary Ordering

In addition to tasking the satellite, customers may order QuickBird Imagery Products directly out of the DigitalGlobe ImageLibrary. Customers may define their order polygons in several ways (see below). ImageLibrary orders receive the Standard level image processing, unless ordered as a Rush ImageLibrary order.

3.2.1 Rush ImageLibrary Delivery

DigitalGlobe offers customers a Rush ImageLibrary delivery option for Basic and Standard Imagery already existing in the ImageLibrary. This option features a 24 hour turnaround time between order confirmation and order shipment or FTP for Black & White, Multispectral, and Bundle products. For Color and Pan-sharpened products, a 48 hour turnaround time (between order confirmation and order shipment or FTP) is offered. Orders comprised of more than one scene for any one customer will be subject to a feasibility assessment.

There are special considerations and timelines for orders over the weekend. Orders received outside of normal business hours will have feasibility assessed on the next business day. Products ordered on Friday will not be sent to the FTP site or shipping dock until Monday morning (Black & White, Multispectral, and Bundle products) or Tuesday morning (Pan-Sharpened products). Processing will start on the next business day for orders confirmed outside of normal business hours.

3.3 Order Polygon

Each order, whether tasking or an ImageLibrary order, scene based or area based, is defined by an Order Polygon. An Order Polygon may contain a minimum of 4 vertices and a maximum of 1,000 vertices, consisting of longitude/latitude (decimal degrees) geographic coordinates on the WGS84 ellipsoid.

The minimum and maximum size for an order polygon depends on the order type and the product selected. Refer to Tables 11, 12, and 13 for order polygon restrictions by product type. An order polygon may be defined using one of the following methods:

- Upper left and lower right corner coordinates if your area is rectangular.
- A center point and a height and width to define your area.
- Shapefile format –the .shp, .shx, and .dbf files must be supplied. A shapefile must contain only one polygon.
- ASCII text format (.gen) Arc/Info Generate format. An ASCII text file must contain a closed polygon with a minimum of four points, and a maximum of 1,000 points (see Table 6).

Format	Example
"ID"	BRISBANE_AUSTRALIA
Longitude, Latitude	152.808,-27.671
Longitude, Latitude	153.244,-27.671
Longitude, Latitude	153.244,-27.236
Longitude, Latitude	152.808,-27.236
END	END

Table 6. Example of the ASCII text file format.

Order polygons that fit within a 12 km x 12 km box (for both scene and area based framing) will be collected in a single satellite pass, unless otherwise requested by the customer. Scene based products will remain 16.5 km (wide) $x \sim 16.5$ km (long) in size.

4. Product Delivery

DigitalGlobe provides its QuickBird Imagery Products to customers on a variety of industry standard image formats and media. In addition to the imagery products, DigitalGlobe also delivers the Image Support Data files in text format as described in Section 10.

4.1 File Formats

QuickBird Imagery Products are available in three image formats:

- GeoTIFF 1.0
- NITF 2.0
- NITF 2.1

4.2 Delivery Options

DigitalGlobe provides a variety of direct and timely delivery options for delivering QuickBird Imagery Products. These options include:

Standard Delivery Service: DigitalGlobe uses standard delivery services (FedEx, DHL, UPS) to deliver media directly to the customer in a timely fashion. DigitalGlobe selects the most reliable and quickest service based upon customer location.

Electronic Delivery Service: The customer may request electronic delivery. DigitalGlobe supports ftp (pull), where the customer logs on to the DigitalGlobe system and retrieves their imagery.

4.3 Media

DigitalGlobe supports delivery on CD and DVD for its QuickBird Imagery Products:

Media	Capacity		
CD	640 MB		
DVD	4 GB		

Note: Basic Imagery not available on CD

Table 7. DigitalGlobe Supported Media.

Those customers who select electronic delivery via ftp (pull) will not receive imagery on media.

4.4 Tiling

Because some QuickBird Imagery Products cannot fit in their entirety on all available media types or may be cumbersome to work with due to their large size, DigitalGlobe offers you the option to break up imagery into smaller pieces called tiles. Tiles may be defined by pixel based grids or by map based coordinates. Pixel based tiles may be defined by approximately 8,000 pixels by 8,000 pixels (8k x 8k), 14,000 pixels by 14,000 pixels (14k x 14k), or 16,000 by 16,000 pixels (16k x16k). Map based tiles are based on map coordinates in product units (meters or feet) and are defined by tile size and tile overlap. Customers who do not wish to tile their imagery may change their media type to one that will accommodate the full size of their product, but should understand that large data files may be difficult to import into some software packages. Please note that most image processing, GIS, and cartographic applications cannot open files over 2 GB in size.

Tiling is an option for all QuickBird products, except Basic Imagery. Note that all Pan-sharpened products must be tiled regardless of media type. Please see Section 5 for a complete definition of QuickBird products.

If an order polygon crosses strip boundaries, then the imagery product will be divided into product components, denoted as P001, P002, etc. When an individual product component exceeds the size limit for the media selected, it is tiled. Each tile, regardless of the tiling option (pixel based or map based) is then given a number corresponding to its position in rows and columns. (See Figure 1).

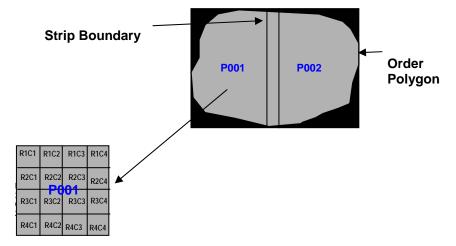


Figure 1. Tile Naming

A tile map file (.til) is delivered with every product to help place the tiles in product coordinates. For more information on the tile map file and more technical information on tiling, see section 10.5.4.

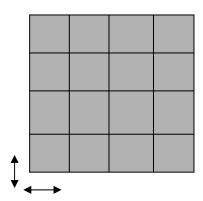


Figure 2. Tile Map Naming Example

Pixel Based Tiling

DigitalGlobe tiles imagery based on pixel grids by first drawing a minimum-bounding rectangle (MBR) around the image-oriented map. That MBR is then divided into tiles, which are sized according to the tiling option selected. Three pixel based tiling options are available, giving you the ability to specify the amount of data in each tile. These are as follows: 8k x8k, 14k x14k, and 16k x16k.

8k x 8k - 8k x 8k tiles have exactly 8,192 pixels by 8,192 pixels per tile. This tiling option may be easily read by commercial off the shelf (COTS) software products.

When the 8k option is selected, DigitalGlobe starts at the upper left corner of the MBR and counts 8000 x 8000 pixels to create the first tile. (The tiles are actually 8 multiplied by 1024 due to internal blocking, so the first tile would be composed of 8,192 by 8,192 pixels for a panchromatic product. Divide by 4 for a multispectral product). The next tile is generated starting where the first tile ends (pixel 8192, 0), and pixels are counted down and across. (This same process is applied to 14k x 14k and 16k x 16k tiling, although 1024 is multiplied by 14 or 16, respectively, for these options.)

If the amount of imagery in a tile is less than 8192 x 8192 pixels, then the tile is cut off at the edge of the imagery. Some padding, or blackfill, pixels may be included to complete the block. A block is comprised of 1024 panchromatic pixels or 256 multispectral pixels.

14k x14k -14k x14k tiles have exactly 14,336 by 14,336 pixels per tile.

16k x16k -16k x16k tiles contain 16,384 X 16,384 pixels per tile.

Map Based Tiling

Map based tiling is available for all projections except Geographic and defined by product units (meters or feet). With this tiling option, the customer defines the tile size and tile overlap. The default tiling origin is the upper left corner of the minimum bounding rectangle for area based products and the upper left corner of the scene for scene based products. In order to define the tiling layout, the customer will specify length and width of the tiles in the product units. In addition, the amount of overlap is customizable between adjacent tiles. Although this tiling option allows for more custom tiling, tile sizes will be limited by the file size restrictions defined in the No Tiling option below.

No Tiling

DigitalGlobe strives to respect the wishes of its customers in regards to tile size selection. However individual scene size, file size, and media type may determine whether a scene requires tiling, regardless of the option selected. An order polygon whose boundaries intersect multiple scenes may need to have individual scenes tiled. An individual scene will be tiled if it is:

- Larger than 2 GB for any available media choice
- Larger than 640 MB for a CD

The following table shows file sizes for each pixel based tiling options.

	Black & White	Color (3-band)	Multispectral	Pan- sharpened (4-band)	Bit Depth
Basic Imagery	800 MB	NA	200 MB	NA	8
(one scene)	1600 MB	NA	400 MB	NA	16
Standard and Orthorectified	75 MB	200 MB	20 MB	270 MB	8
Imagery (8k x 8k tile)	150 MB	400 MB	40 MB	540 MB	16
Standard and Orthorectified Imagery (14k x 14k tile)	200MB	600MB	50Mb	800MB	8
	400MB	1200MB	100MB	1600MB	16
Standard and Orthorectified	300 MB	800 MB	75 MB	1080 MB	8
Imagery (16k x 16k tile)	600 MB	1600 MB	150 MB	2160 MB	16

 Table 8. File Size of QuickBird Imagery Products at Different Tile Sizes

Please see the *QuickBird Imagery Products FAQ* for more information on tiling, tile file sizes, and working with tiled imagery.

4.5 Delivery Timelines

Delivery time for products depends on the product and product options that a customer selects. Table 9, Expected Delivery Times by Product and Tasking Type, establishes the average timetables for product delivery. Times in this table indicate the number of business days to shipment, after DigitalGlobe receives all of the necessary support data to process an order. For Basic and Standard Imagery, this is after imagery acquisition. For Orthorectified Imagery, this is after imagery acquisition, and the collection of appropriate DEMs and GCPs. For ImageLibrary imagery, this time is number of days after order confirmation.

	Standard Tasking	Priority Tasking	Rush Tasking	ImageLibrary	Rush ImageLibrary
Basic ¹	3 days	3 days	60 hours	3 days	24 hours
Standard ¹	3 days	3 days	60 hours	3 days	24 hours
Standard - Pan-sharpened ¹	3 days	3 days	60 hours	3 days	48 hours
Orthorectified ¹	5 days	5 days	N/A	5 days	N/A
Orthomosaic - less than 1500km2	12 days	12 days	N/A	12 days	N/A
Orthomosaic - more than 1500km2	20 days	20 days	N/A	20 days	N/A
¹ Processing assumes one image. Add	itional contiguous	scenes in a single	e order will add a no	ominal number of d	ays.

Table 9. Expected Delivery Times, by Product Type and Tasking Type.

5. QuickBird Product Levels

DigitalGlobe offers QuickBird Imagery Products at several product levels. As shown in Table 10, the product levels equate to different levels of processing and geolocational accuracy.

Product Level	Processing	Absolute	Accuracy	Geographic Availability	
Floudet Level	Frocessing	CE90%	RMSE	Geographic Availability	
Basic Imagery	Sensor Corrected (Raw)	23-meters*	14-meters*	Worldwide	
Standard Imagery	Georectified	23-meters**	14-meters**	Worldwide	
Ortho 1:50,000	Orthorectified	25.4-meters	15.4-meters	Worldwide	
Ortho 1:12,000	Orthorectified	10.2-meters	6.2-meters	US and Canada	
Ortho 1:5,000	Orthorectified	4.23-meters	2.6-meters	Worldwide	
Ortho 1:4,800	Orthorectified	4.1-meters	2.5-meters	US and Canada	
Custom Ortho	Orthorectified	variable***	variable***	Worldwide	

^{*}Attained using supplied Image Support Data files and a user supplied DEM, excluding sensor and viewing geometry and topographic displacement

Table 10. QuickBird Imagery Products and Associated Accuracies.

5.1 Basic Imagery Products

Basic Imagery products are the least processed of the QuickBird Imagery Products and are designed for customers having advanced image processing capabilities. Basic Imagery, together with the supplied attitude, ephemeris, and camera model information, is suitable for advanced photogrammetric processing (i.e., orthorectification).

Processing: Basic Imagery products are radiometrically corrected and sensor corrected, but not geometrically corrected nor mapped to a cartographic projection and ellipsoid. Image resolution varies with off nadir angle. Resolution for black & white products is 61-centimeters at nadir, but increases to 72-centimeters at a 25° off-nadir look angle, and up to 1.14m at the maximum off nadir angle of 45°. Resolution for multispectral imagery ranges from 2.44-meters

^{**}Excluding viewing geometry and topographic displacement

^{***} Accuracy of the Custom Ortho is determined by the accuracy and quality of customer supplied support data.

(at nadir) to 2.88-meters (25° off-nadir look angle) to 4.56-meters (45° off-nadir look angle). The image is resampled to a coordinate system defined by the ideal Basic Imagery camera model. The resulting GSD varies over the entire product as a function of the attitude & ephemeris during the imaging process. Basic Imagery products are not available with pan-sharpening.

The radiometric corrections applied to this product include:

- Relative radiometric response between detectors removes differences in imagery due to sensitivity variations between pixels
- Non-responsive detector fill fills in null values on imagery due to detectors that are no longer collecting data
- Conversion for absolute radiometry calibrates overall detector response from known radiometric signals

The sensor corrections account for:

- Internal detector geometry combines the six digital chip assemblies into a virtual array
- Optical distortion corrects image distortion caused by sensor optics
- Scan distortion corrects for distortions caused by slew and scan rate
- Line-rate variations corrects for variations in the panchromatic scan rate
- Registration of the multispectral bands all multispectral bands line up with each other, but the panchromatic and multispectral bands are not registered

Each scene in a Basic Imagery order is processed individually, therefore, multi-scene Basic Imagery products are neither spatially nor spectrally mosaiced.

Accuracies: The Basic Imagery product is in the satellite frame of reference, is not tied to ground location, and is therefore a geometrically raw product with no implied accuracy. However, when the data are processed with the supplied refined Image Support Data (ISD) and a user-supplied Digital Elevation Model, a horizontal geolocational accuracy of 23-meter CE90%, excluding viewing geometry and topographic displacement may be achieved. Basic Imagery products may be processed with a supported commercial imaging software application, which utilize the ISD associated with the image. Many software packages offer two ways to orthorectify QuickBird imagery: the QuickBird Rigorous Sensor Model which uses the supplied attitude and ephemeris files or Rational Polynomial Coefficients (RPCs) which provide a mathematical mapping from satellite coordinates to image coordinates. When Basic Imagery is processed with commercial software packages using high quality DEMs (e.g., DTED Level 2) and sub-meter GCPs, internal DigitalGlobe testing has produced orthorectification accuracies of 2-5 meters RMSE with the QuickBird Rigorous Sensor Model and orthorectification accuracies of 3-6 meters RMSE with the RPC method.

Physical Structure: Basic Imagery products are delivered as scenes. In length, a scene will be approximately 16.5 km. In width, a scene will be the full strip width (27,552 pan pixels). The area that this width represents on the ground depends on the collection parameters of the scene (off-nadir angle, orientation of collection, etc). A scene has an approximate area of 272 km2 (16.5 km) at nadir.

For orders of Basic Imagery products larger than a single scene, the delivered product will be a full strip width wide (27,552 pan pixels), but the length of the product will be determined by the Minimum Bounding Rectangle of the Order Polygon. The product will be delivered in scene sized increments, or increments of 16.5 km in length, except for the last scene in the strip, which may be a fractional scene. There will be at least 1.8 km overlap between each scene.

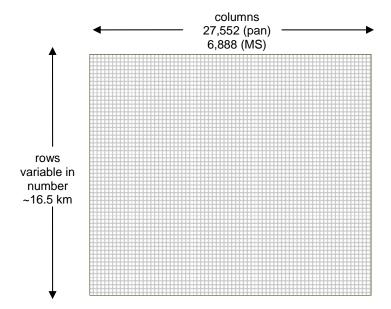


Figure 3. Panchromatic and Multispectral Basic Imagery Scene Characteristics.

As shown in Figure 4, each order polygon that falls entirely within a single scene will result in a full Basic Imagery scene being delivered.

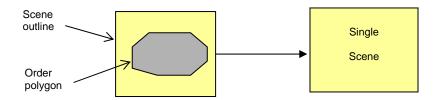


Figure 4. Final Product Structure for Sub-Scene Basic Imagery Products.

Figure 5, Final Product Structure for Multi-Scene Basic Imagery products, shows the final product structure for Basic Imagery products larger than a single scene.

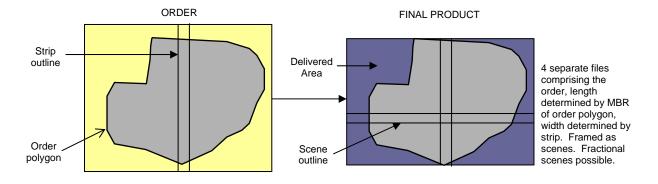


Figure 5. Final Product Structure for Multi-Scene Basic Imagery Products.

5.1.1 Specification Table for Basic Imagery Products

Table 11, Characteristics of Basic Imagery products, describes the processing specifications, product parameters, and delivered Image Support Data files for Basic Imagery products.

Physical Characteristics - Basic Imagery			
Minimum deliverable area	1 scene		
Product Framing	Scene-based		
Final product physical structure	Scenes, fractional scenes		
Pan scene dimensions (pixels col, row)	27,552 x variable length (~16.5 km)		
Pan scene size (approximate at nadir)	16.5 km x 16.5 km		
MS scene dimensions (pixels col, row)	6,888 x variable length (~16.5km)		
MS scene size (approximate at nadir)	16.5 km x 16.5 km		
Process	sing Specifications		
Absolute geolocation accuracy (nadir)	Geometrically raw, supplied Image Support Data and user supplied DEM allows processing to 23-m CE90%, excluding viewing geometry and terrain displacement		
Additional geometric corrections applied	N/A		
Geolocation information applied	N/A		
Applied terrain information	N/A		
Spatial mosaicing applied	N/A		
Color balance applied	N/A		
Radiometric corrections	Relative radiometric response between detectors; non-responsive detector fill; conversion for absolute radiometry		
Sensor corrections	Internal detector geometry; optical distortion; scan distortion; line-rate variations; mis-registration of the multi-spectral bands		
Prod	luct Parameters		
Product Options	Black and White, MS, Bundle (Black and White & MS)	Yes	
Number of bits/pixel deliverable image	8 or 16	Yes	
Digital scaling method (applies to 8 bit only)	Linear with maximum value set to 255		
Resampling option	4x4 cubic convolution; 2x2 bilinear; Nearest neighbor; 8-pt sinc; MTF kernel	Yes	
Output tile size options	N/A		
Output pixel spacing	Same as collected		
Map projections	N/A		
Ellipsoids and datums	N/A		
Output alignment	N/A		
Cloud cover	0-20%		
Deliv	very Parameters		
Output product delivery media options	DVD; ftp (pull)	Yes	
Image data format options	NITF 2.0; NITF 2.1; GeoTIFF 1.0	Yes	
Imag	ge Support Data		
ISD files supplied to customer	README file; image metadata file; ephemeris file; attitude file; geometric calibration file; RPC00B file; license text file; tile map file		
Spacecraft telemetry	Refined attitude/ephemeris (supplied with ISD)		

 Table 11. Characteristics of Basic Imagery Products.

5.2 Standard Imagery Products

Standard Imagery products are suitable for users requiring modest absolute accuracy and/or large area coverage. Users of Standard Imagery products usually possess sufficient image processing tools and knowledge to manipulate and exploit the imagery for a wide variety of applications.

Processing: Standard Imagery products are radiometrically corrected, sensor corrected, geometrically corrected, and mapped to a cartographic projection. Standard Imagery products are available as black & white, color, or pan-sharpened with a 60-centimeter or 70-centimeter GSD, or multispectral with a 2.4-meter or 2.8-meter GSD. All Standard Imagery products have uniform pixel spacing throughout the entire product.

The radiometric corrections applied to this product include: relative radiometric response between detectors, non-responsive detector fill, and a conversion for absolute radiometry. The sensor corrections account for internal detector geometry, optical distortion, scan distortion, any line-rate variations, and registration of the panchromatic and multispectral bands. Geometric corrections remove spacecraft orbit position and attitude uncertainty, Earth rotation and curvature, and panoramic distortion.

Standard Imagery comes in two varieties:

Standard Imagery: Standard Imagery has a coarse DEM applied to it, which is used to normalize for topographic relief with respect to the reference ellipsoid. The degree of normalization is relatively small, so while this product has terrain corrections, it is not considered orthorectified.

Accuracies: Standard Imagery products have an average absolute geolocation accuracy of 23-meter CE90%, excluding any topographic displacement and off-nadir viewing angle. Ground location is derived from refined satellite attitude and ephemeris information without requiring the use of Ground Control Points (GCPs).

Ortho Ready Standard Imagery: Ortho Ready Standard Imagery has no topographic corrections, making it suitable for orthorectification. Ortho Ready Standard Imagery is projected to a constant base elevation, which is calculated on the average terrain elevation per order polygon.

Accuracies: Ortho Ready Standard Imagery products have a delivered absolute geolocation accuracy of 23-meter CE90%, excluding any topographic displacement and off-nadir viewing angle. When processed using supplied RPCs, a high quality DEM (e.g. DTED Level 2), and submeter GCPs, accuracies in the range of 3 to 10 meters RMSE may be achieved.

With the exception of lack of terrain correction, Ortho Ready Standard Imagery products have all the same specifications as Standard Imagery products. All the specifications in this section apply to both Standard Imagery products and Ortho Ready Standard Imagery products. Please see section 5.3 for more detail and comparisons between Basic Imagery products, Standard Imagery products, and Ortho Ready Standard Imagery products.

If the order polygon crosses more than one strip, one product is made for each image strip that is used to fulfill the order. As the Standard Product is not mosaiced, one product will be delivered for each strip the order polygon intersects.

Physical Structure: Standard Imagery products are area based and may be ordered by the square kilometer. Figure 6 shows the final product structure for order polygons that fall within a single strip for Standard Imagery products.

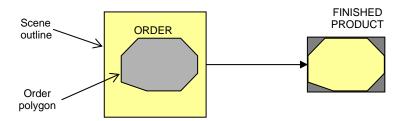


Figure 6. Product Structure for Standard and Orthorectified Imagery Products within a single strip.

Figure 7 shows the final product structure for a Standard Imagery product formed from multiple strips.

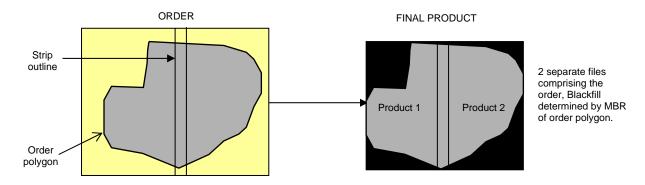


Figure 7. Product Structure for Standard and Orthorectified Imagery Products fulfilled from multiple strips.

Standard Imagery products are delivered as one image file for each strip the order polygon intersects. If the order polygon intersects more than one strip, the imagery in each strip will be delivered as separate files, will not be mosaiced together to form a single image, and will not be radiometrically balanced.

5.2.1 Specification Table for Standard Imagery Products

Table 12, Characteristics of Standard Imagery products, lists the processing specifications, product parameters, and delivered Image Support Data files for Standard Imagery products.

Physical Charact	teristics - Standard Imagery	Customer Selected
Minimum deliverable area	25km² (ImageLibrary); 64 km² (new collection)	
Product Framing	Area-based	
Final product physical structure	Blackfill to a MBR surrounding the ordered image pixels	
Pan scene dimensions (pixels col, row)	N/A	
Pan scene size (approximate at nadir)	N/A	
MS scene dimensions (pixels col, row)	N/A	
MS scene size (approximate at nadir)	N/A	
Process	sing Specifications	
Absolute geolocation accuracy (nadir)	23 m CE90% (excluding terrain distortion & viewing geometry)	
Additional geometric corrections applied	Spacecraft orbit position and attitude uncertainty; Earth rotation; Earth curvature; panoramic distortion; terrain elevation (coarse)	
Geolocation information applied	Ephemeris and attitude; rotation and alignment to map projection	
Spatial mosaicing applied	N/A	
Color balance applied	N/A	
Radiometric corrections	Relative radiometric response between detectors; non- responsive detector fill; conversion for absolute radiometry	
Sensor corrections	Internal detector geometry; optical distortion; scan distortion; any line-rate variations; mis-registration of the multi-spectral bands	
Terrain corrections	none (Ortho Ready Standard); coarse DEM (Standard)	Yes
Prod	uct Parameters	
Product Options	Black and White, MS, Bundle (Black and White & MS), Natural Color, Color Infrared, Pan-sharpened (4 band)	Yes
Number of bits/pixel deliverable image	8 or 16	Yes
Digital scaling method (applies to 8 bit only)	Linear with maximum value set to 255 (if highest DN is <= 255, no scaling is applied)	
Resampling option	pan-sharpening kernel; 4x4 cubic convolution; 2x2 bilinear; Nearest neighbor; 8-pt sinc; MTF kernel	Yes
Dynamic Range Adjustment (DRA) option	Color correction and contrast enhancement (8-bit only)	Yes
Output tile size options	None; 8k x 8k pixels; 14k x14k; 16k x 16k pixels	Yes
Output pixel spacing	60 or 70 centimeters for Black and White, Color, and Pan- sharpened; 2.4 or 2.8 meters for MS	Yes
Map projections	Listed in Table 14	Yes
Ellipsoids and datums	Listed in Table 14	Yes
Output alignment	Rotated to Map North up	
Cloud cover	0-20%	
Deliv	very Parameters	
Output product delivery media options	CD; DVD; ftp (pull)	Yes
Image data format options	NITF 2.0; NITF 2.1; GeoTIFF 1.0	Yes
Imag	e Support Data	
ISD files supplied to customer	README file; image metadata file; RPC00B; license text file; tile map file	
Spacecraft telemetry	Refined attitude/ephemeris (used to create product)	

 Table 12. Characteristics of Standard Imagery Products.

5.3 Comparison of Basic, Standard, and Ortho Ready Standard Imagery

Basic, Standard, and Ortho Ready Standard Imagery all have different attributes, making them appropriate for different uses. This section highlights some of the main differences between the products.

Basic Imagery: Basic Imagery allows orthorectification using the QuickBird Rigorous Sensor Model or RPCs. Results will be slightly better using the QuickBird Rigorous Sensor Model. Orthorectification must be done on a per scene basis.

Standard Imagery: Standard Imagery is most useful for applications requiring georeferenced imagery that are not terrain corrected. Standard Imagery has a coarse DEM applied to it, making it unsuitable for orthorectification.

Ortho Ready Standard Imagery: Ortho Ready Standard Imagery is a georeferenced product, designed for area-based orthorectification, using supplied RPCs. Achievable accuracies will be comparable to those attainable using Basic Imagery with RPCs. If orthorectification is not the goal, then Standard Imagery is recommended. Ortho Ready Standard Imagery is projected to the average base elevation of terrain covered by the order polygon. As such, it provides a close approximation of the order polygon on the ground. However, it could be off by several hundred meters, especially in areas of high relief, if the user does not apply terrain corrections.

5.4 Orthorectified Imagery Products

Orthorectified Imagery products are GIS-ready and are used as an image base map for a wide variety of applications. Orthorectified Imagery products are an ideal base for creating and revising mapping and GIS databases, or for registering existing feature layers. These products can also be used for change detection and other analytical applications that require a high degree of absolute accuracy.

Processing: Orthorectified Imagery products are radiometrically corrected, sensor corrected, geometrically corrected, orthorectified, and mapped to a cartographic projection and datum. Orthorectified Imagery products are available as black & white, color, or pan-sharpened, with a 60-centimeter or 70-centimeter resolution, or multispectral, with a 2.4-meter or 2.8-meter resolution. The radiometric corrections applied to this product include: relative radiometric response between detectors, non-responsive detector fill, and a conversion for absolute radiometry. The sensor corrections account for internal detector geometry, optical distortion, scan distortion, any line-rate variations, and registration of the multispectral bands. Geometric corrections remove spacecraft orbit position and attitude uncertainty, earth rotation and curvature, and panoramic distortion.

For order polygons that require more than 1 strip, customers have the option to have their products spatially mosaicked and/or color balanced. Mosaicking the imagery will assure that strips are edgematched, while color balancing will assure that radiometric differences between scenes are minimized.

Orthorectified Imagery products require DEMs and/or GCPs to remove relief displacement and to place each pixel into its correct, map location. Before an order for an Orthorectified Imagery product is accepted, DigitalGlobe will determine whether it can obtain the appropriate support data to make the desired product. The accuracy of the DEMs and/or GCPs used to make each product depends on the scale of the Orthorectified Imagery product ordered. For Orthorectified Imagery products with stated accuracies (1:50,000, 1:12,000, 1:5,000 and 1:4800), it is DigitalGlobe's responsibility to acquire the support data necessary to make the product.

DigitalGlobe also offers customers the opportunity to order Custom Orthorectified Imagery products. To create these products DigitalGlobe uses customer provided support data to orthorectify QuickBird Imagery. There is no stated accuracy associated with the Custom Orthorectified Imagery product because the quality and accuracy of the finished product is directly dependent on the quality and accuracy of the support data. DEMs and GCPs are the most typical types of support data that customers provide to DigitalGlobe. Alternate forms of control, such as existing orthorectified data or high accuracy GIS data, may also be accepted. Please refer to Specifications for Customer-Provided Support Data, available from Customer Service, for detailed format requirements for support data.

Accuracies: Orthorectified products have an absolute geolocational accuracy, which varies depending on mapping scale (see Table 9, QuickBird Imagery Products and Associated Accuracies). Ground location is measured with refined satellite attitude and ephemeris information with Ground Control Points depending on final mapping scale.

Physical Structure: Orthorectified Imagery products are area-based and may be purchased by the square kilometer. The delivered area for Orthorectified Products is the order polygon, which is blackfilled to the Minimum Bounding Rectangle.

Figure 6 shows the final product structure for order polygons that fall within a single strip for Orthorectified Imagery.

Figure 8, Product Structure for Orthomosaicked Imagery products, shows the final product tiling for an Orthorectified product formed from multiple strips.

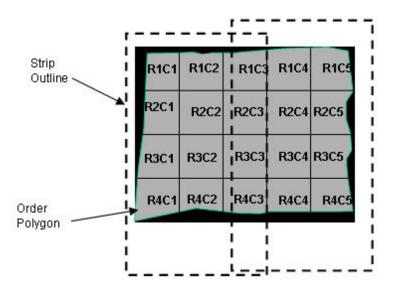


Figure 8. Product Structure for Orthomosaicked Imagery Products

5.4.1 Specification Table for Orthorectified Imagery Products

Table 13, Characteristics of Orthorectified Imagery products, lists the processing specifications, product parameters, and delivered Image Support Data files for Orthorectified Imagery products.

Physical Characteristics - Ortho Imagery		
Minimum deliverable area	100 km2	
Product Framing	Area-based	
Final product physical structure	Blackfill to a MBR surrounding the ordered image pixels	
Pan scene dimensions (pixels col, row)	N/A	
Pan scene size (approximate at nadir)	N/A	
MS scene dimensions (pixels col, row)	N/A	
MS scene size (approximate at nadir)	N/A	
Process	sing Specifications	
Absolute geolocation accuracy (nadir)	See Table 9	
Additional geometric corrections applied	Spacecraft orbit position and attitude uncertainty; Earth rotation; Earth curvature; panoramic distortion; terrain elevation (fine)	
Geolocation information applied	Refined ephemeris and attitude; rotation; and alignment to map projection	
Spatial mosaicing applied	Images mosaicked to minimize seamlines	Yes
Color balance applied	Color balanced across mosaic seamlines	Yes
Radiometric corrections	Relative radiometric response between detectors; non-responsive detector fill; conversion for absolute radiometry	
Sensor corrections	Internal detector geometry; optical distortion; scan distortion; any line-rate variations; mis-registration of the multispectral bands	
Prod	luct Parameters	
Product Options	Black and White, MS, Bundle (Black and White & MS), Natural Color, Color Infrared, Pan-sharpened (4 band)	Yes
Number of bits/pixel deliverable image	8 or 16	Yes
Digital scaling method (applies to 8 bit only)	Linear with maximum value set to 255 (if highest DN is <= 255, no scaling is applied)	
Resampling option	pan-sharpening kernel; 4x4 cubic convolution; 2x2 bilinear; Nearest neighbor; 8-pt sinc; MTF kernel	Yes
Dynamic Range Adjustment (DRA) option	Color correction and contrast enhancement (8-bit only)	Yes
Output tile size options	None; 8k x 8k pixels; 14k x14k; 16k x 16k pixels Product Units-customer specified (mosaics only)	Yes
Output tile overlap	customer specified in product units (mosaics only)	Yes
Output pixel spacing	60 or 70 centimeters for Black and White, Color, and Pan- sharpened; 2.4 or 2.8 meters for MS	Yes
Map projections	Listed in Table 14	Yes
Ellipsoids and datums	Listed in Table 14	Yes
Output alignment options	Map north	
Cloud cover	0-20%; 0% (pending feasibility assessment)	Yes
Deliv	very Parameters	
Output product delivery media options CD; DVD; ftp (pull)		Yes
Image data format options NITF 2.0; NITF 2.1; GeoTIFF 1.0		Yes
Imag	ge Support Data	
ISD files supplied to customer	README file; image metadata file; license text file; tile map file	
Space craft telemetry	Refined attitude/ephemeris (used to create product)	

 Table 13. Characteristics of Orthorectified Imagery Products.

5.5 Projections and Datums

DigitalGlobe supports the following map projections, ellipsoids, and datums:

Map Projections		
Geographic (Lat/Long)		
State Plane Coordinate System		
UTM (default)		

Ellipsoids and Datums
GDA 1994
GRS80
NAD27
NAD83
WGS84

 Table 14. DigitalGlobe Supported Map Projections, Ellipsoids, and Datums.

6. QuickBird Imagery Product Options

Each of the QuickBird Imagery Product levels described in section 5 is available in a variety of product options. These product options use different spectral band combinations and imply differences in the pixel resolution of the final product. The QuickBird sensor collects five image bands. Table 15 describes the spectral bands that are used to produce each product option.

Product Option	Black & White	Blue	Green	Red	Near - IR
Option	725nm	479.5nm	546.5nm	654nm	814.5nm
Black & White (panchromatic)	xx				
Multispectral (MS)		xx	xx	xx	xx
Bundle (Pan & MS)	XX	xx	xx	xx	xx
Natural Color (3- band)	XX	xx	xx	xx	
Color Infrared (3-band)	xx		xx	xx	xx
Pan-sharpened (4-band)	xx	xx	xx	xx	xx

Table 15. The Relationship between Spectral Bands and Product Options.

6.1 Black & White (Panchromatic) Products

DigitalGlobe QuickBird black & white products visual enable superior analysis 61-centimeter based on resolution (at nadir) and 11-bit collected information depth. The panchromatic sensor collects information at the visible and nearinfrared wavelengths and has a bandwidth of 725 nm.

The output Ground Sample Distance of black & white products varies with product level. Basic Imagery products are delivered at the GSD in which the data were collected (ranging from 61 cm at nadir to 1.14m at 45° off-nadir). For Standard and Orthorectified Imagery products the customer has the choice to resample to either a 60 cm or 70 cm GSD.

6.2 Multispectral Products

DigitalGlobe QuickBird multispectral products provide four discrete non-overlapping spectral bands and 11-bit collected information depth. The multispectral products cover the visible and near-infrared wavelengths in four bands. All four bands are delivered as one file when this product is ordered by the customer.

The output Ground Sample Distance of the Multispectral Product varies with product level. Basic Imagery products are delivered at the GSD in which the data were collected (ranging from 2.44 m to 4.56 m at 45° off-nadir). For Standard and Orthorectified Imagery products the

customer has the choice to resample to either a 2.4 m or 2.8 m GSD.

6.3 Bundle (Black & White and Multispectral) Products

The QuickBird satellite collects both multispectral and black & white (panchromatic) imagery concurrently, therefore customers have the option to order both black & white and multispectral products for the same area. When a customer selects the 'Bundle' option, the products will be processed to the same product level, the same product parameters, and delivered as two distinct products (one containing black & white imagery and one containing all four multispectral bands) with two sets of associated Image Support Data (ISD) files.

6.4 Color Products (3-band)

QuickBird Imagery Products are available in two 3-band color product options:

- Natural Color (using blue, green, and red bands)
- Color Infrared (using green, red, and infrared bands)

pan-sharpened products combine the visual information of three multispectral bands, with the spatial information of the black & white band. Color Products are available as product options for Standard and Orthorectified Imagery. not for Basic Imagery. Customers may choose between a 60 cm or 70 cm GSD. Currently, Color products are resampled using only the 4x4 cubic convolution or the 8 pt sinc methods.

6.5 Pan-sharpened Products (4-band)

QuickBird Imagery Products are also available in a 4-band pan-sharpened product option. These products combine the visual information of four multispectral bands (blue, green, red, and infrared), with the spatial information of the panchromatic band. Pan-sharpened Products are available as product options for Standard and Orthorectified Imagery, but not for Basic Imagery. Customers may choose between a 60 cm or 70 cm GSD. Currently, Pan-sharpened products are resampled using the DigitalGlobe pan-sharpening kernel. The 4x4 cubic convolution and 8 pt sinc methods are available but are not recommended for QuickBird imagery.

Figure 9. 4-band Pan-sharpened Product, Natural Color on the Left and Color Infrared on the Right.

6.6 Dynamic Range Adjustment Option

Dynamic Range Adjustment (DRA) is a visual enhancement applied to QuickBird imagery. The DRA enhancement consists of two parts; color correction and contrast enhancement. This enhancement is strictly visual and does not affect the geographic location of the pixels. This product is recommended for users who don't have the tools to apply visual enhancements to QuickBird imagery. This product is not recommended for those users intending to perform scientific analysis or spectral classification using QuickBird imagery data. This option is available for 8 bit QuickBird Standard and Orthorectified Imagery Products.

7. Quality

All imagery is placed in the DigitalGlobe ImageLibrary. Prior to being placed in the ImageLibrary, DigitalGlobe assesses all imagery for quality, including Cloud Cover ratings and National Image Interpretability Rating Scales (NIRS) (Table 16).

Cloud cover is defined to include pixels through which ground features are obscured either partially or in their entirety due to atmospheric conditions. To be considered cloud cover, a definite boundary between the affected pixels and the unaffected pixels must be visible.

National Image Interpretability Rating Scales (NIIRS) is utilized to systematically define and measure the quality of images and performance of imaging systems. The NIIRS is used by imagery analysts to assign a number which indicates the interpretability of a particular image. The NIIRS is one way to directly relate the quality of an image to the interpretation tasks for which it may be used.

Imagery that is greater than 20% cloud cover will be automatically retasked. For area-based products, the cloud cover assessment is performed on your Order Polygon. For scene-based products, the cloud cover assessment is performed on the full scene.

	Quality
Lioud cover rating ranges	5%; 10%; 15%; 20%; 30%; 40%; 50%; 60%; 70%; 80%; 90%; 100%
Quality metadata	NIIRS rating (0 - 9)

Table 16. Possible Quality ratings for QuickBird Imagery Products in the DigitalGlobe ImageLibrary.

8. Product Naming

DigitalGlobe's product naming provides key information about an image, including acquisition time and date, imaging bands, product level, and product identification. Specifically, the product name is comprised of:

color file name> = <acquisition time>-color info>-color info>

Product File Name = 08SEP01123645-P2AS-00000000987_01_P001.TIF

<acquisition time> = 08SEP01 (date) 123645 (time). UTC time

identifier)

<format extension> = TIF (GeoTIFF)

Additional parameters for the 'product info' parameter of the product naming convention are listed in Table 17 Product Naming Parameters.

Image Band	Product Level	Image Type	Tile Identifier (if product is tiled)	Image Format
P = Panchromatic	1B = Basic	S = Single/Sub-scene	R1C1 = row1,column1	TIF = GeoTIFF 1.0
M = Multispectral	2A = Standard	M = Mosaic	R1C2 = row1,column2	NTF = NITF 2.0, 2.1
S = Pan Sharpened	3A = Ortho (1:50,000)		R2C1 = row2,column1	
	3D = Ortho (1:12,000)		R2C2 = row2,column2	
	3F = Ortho (1:5,000)		etc.	
	3G = Ortho (1:4,800)			
	3X = Custom Ortho			

 Table 17. Product Naming Parameters.

9. Licensing

DigitalGlobe offers flexible licensing options to meet your needs. Customers may select the license type at time of order. For all licenses, customers must identify the organizations that will be using the data at the time of order placement. Licensing options include:

Base	Up to 5 (five) permitted customer groups, working on a joint project, as defined by the DigitalGlobe Product End User License Agreement	License cannot be transferred. License is not exclusive. Can be used by agents and/or contractors of the User. All Users must be identified at time of purchase. Cannot be used to create Derivative Works*
Group	6 (six) to 10 (ten) permitted customer groups, working on a joint project, as defined by the DigitalGlobe Product End User License Agreement	License cannot be transferred. License is not exclusive. Can be used by agents and/or contractors of the User. All Users must be identified at time of purchase. Cannot be used to create Derivative Works*
Enterprise	11 (eleven to 25 (twenty-five) permitted customer groups, working on a joint project, as defined by the DigitalGlobe Product End User License Agreement	License cannot be transferred. License is not exclusive. Can be used by agents and/or contractors of the User. All Users must be identified at time of purchase. Cannot be used to create Derivative Works*
Enterprise Premium	26 (twenty-six) or more permitted customer groups, working on a joint project, as defined by the DigitalGlobe Product End User License Agreement	License cannot be transferred. License is not exclusive. Can be used by agents and/or contractors of the User. All Users must be identified at time of purchase. Cannot be used to create Derivative Works*
Educational	(one) department within a single educational organization within a single country	Publish research results derived from the use and analysis of the Product after the advance review and approval by DigitalGlobe. Cannot be used to create Derivative Works*

^{* -} Customers are permitted to create derivative works for internal use, including reformatting QuickBird Imagery Products into different formats or media from which they are delivered, modifying the QuickBird Imagery Products through manipulation techniques and/or the addition of other data, and making copies of the resulting bundled image product.

Customers are permitted to use the imagery data provided by DigitalGlobe to prepare vector maps so long as the created vector maps do not include DigitalGlobe's imagery data, and to further distribute the created vector maps.

Table 18 Imagery Licenses and Definitions.

10. Image Support Data

All QuickBird Imagery Products are delivered with a set of metadata files called Image Support Data (ISD). This section describes Version R of the ISD specification. The number and types of files delivered varies depending on the product ordered. The Image Support Data files can be viewed as a collection point for all useful ancillary data. Table 19 lists the Image Support Data files that are delivered with each product type.

File Name	Extension	Basic Imagery	Standard Imagery	Orthorectified Imagery		
DELIVERY LEVEL ISD						
Top Level Index (Readme) File	.TXT	XX	XX	XX		
Top Level Index (XML) File	.XML	XX	XX	XX		
Layout File	.JPG	XX	XX	XX		
Shapefiles	.shx, .shp, .dbf	XX	XX	XX		
Manifest File	.MAN	FTP only	FTP only	FTP only		
End of Transfer File	.TXT	FTP only	FTP only	FTP only		
PRODUCT COMPONENT LEVEL ISD						
Product Component Index (Subdirectory Readme) File	.TXT	xx	XX	XX		
License File	.TXT	XX	XX	XX		
Image Metadata File	.IMD	XX	XX	XX		
Product Browse File	.JPG	XX	XX	XX		
Tile Map File	.TIL	XX	XX	XX		
Attitude File	.ATT	XX				
Ephemeris File	.EPH	XX				
Geometric Calibration File	.GEO	XX				
RPC00B File	.RPB	XX	XX			
XML File	.XML	XX	XX	XX		

Table 19. Image Support Data (ISD) Files Delivered with Product Type.

10.1 ISD File Description

Products include ISD at two levels: one set of Delivery ISD, and one set of Product Component ISD for each product option ordered. The number of product components depends on the layout of the order polygon with respect to scene or strip boundaries. If the order polygon is entirely contained within a single scene or strip, then only one product component will be delivered. If an order polygon crosses strip or scene boundaries, then the imagery product will be divided into multiple product components. Product options include panchromatic, multispectral, or pan-sharpened.

The Delivery ISD (one set per delivery) consists of:

Top Level Index (Readme) File – This file contains a list of names of the product files and the ISD files, along with copyright information for the entire product delivery.

Top Level Index XML File – This file contains the same information as the Top Level Index (README) file but in XML format.

Layout File – This file spatially illustrates how the delivery order is spread out across the media including product and order polygon extents. The map includes volume and product labels. The file is in the standard jpeg format. Media volume information is not included for electronic deliveries.

Shapefiles – These files spatially illustrate the product layout in a similar way to the layout file except in shapefile format. The files represent the order polygon, strip boundaries, product boundaries, and tile boundaries.

Manifest File – The manifest file is included with electronic (FTP) deliveries, only. The file contains the directory listing of the files delivered with the product

End of Transfer File – The end of transfer file is included with electronic (FTP) deliveries, only. The appearance of this file on the FTP site indicates that DigitalGlobe has completed transferring all product files. It is a zero length file.

The Product Component ISD (one set per product component option) consists of:

Product Component Index (Subdirectory Readme) File – The README file provides copyright information and the names of the ISD files for a single product within a delivery.

License File – The license file contains the text of the selected license.

Image Metadata File – The image metadata file describes key attributes about the image product, including product level, corner coordinates, and projection information, and time of acquisition.

Product Browse File – The product browse file is a JPEG compressed browse image of the delivered product.

Tile Map – The tile map file assists the customer in determining what tile to ingest to look at a specific part of the order polygon.

Attitude File – The attitude includes the time of first data point, the number of points, and the interval between the points and attitude information.

Ephemeris File – The ephemeris file includes the time of first data point, the number of points, and the interval between the points and ephemeris information.

Geometric Calibration File – The geometric calibration file contains the standard photogrammetric parameters of a virtual camera that models the corresponding QuickBird camera and optical system for Basic Imagery products.

RPC00B File – The RPC00B file contains the RPC information, which can be used to rectify the image. This is a mathematical mapping from object space coordinates to image space coordinates.

XML File – This file contains the same information as the combined README, Licensing, Image Metadata, Tile Map and RPC00B files, in XML format. For Basic Imagery Products, the attitude, ephemeris, and geometric calibration file are included as well.

10.2 File Layout

This section describes the structure by which the ISD files are organized for delivery. Figure 10 diagrams the layout as it applies to delivery of imagery and ISD files for all media types. Product Level Directories are identified with the product id and a 3 character descriptor: PAN for Panchromatic, MUL for Multispectral, PSH for Pansharpened, and MOS for Mosaicked products.

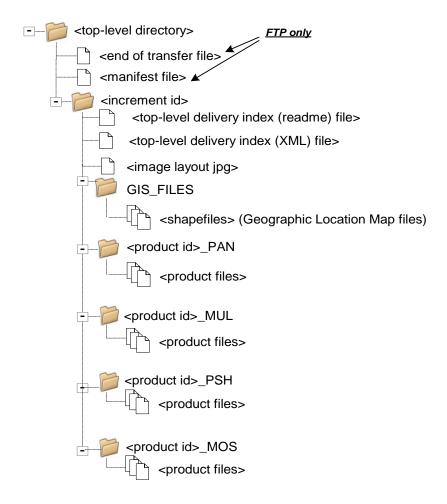


Figure 10. File Layout diagram

10.3 ISD File Format

ISD files are written in the Parameter Value Language (PVL) and Extensible Markup Language (XML). The information in PVL format is provided in multiple files while the information in XML is provided in a single file. The information provided in PVL and XML are the same semantically but differ only in syntax.

10.3.1 PVL Format

Each record consists of a variable length parameter name and a parameter value, in the form parameterName = value followed by a semi-colon. The value can be an integer (decimal, binary, octal, or hexadecimal), a floating point number, a character string, a UTC time, a set, or a list. The format for UTC time is YYYY-MM-DDThh:mm:ss.ddddddZ. Character strings values can be enclosed in quotation marks, although the quotation marks are not required if the string contains no special characters or whitespace. Sets are delimited by { }, and lists are delimited by (). Nested sets and lists are allowed. Comments in the file begin with a slash-asterisk /* and end with an asterisk-slash */.

Named groups begin with BEGIN_GROUP = GROUPNAME and end with END_GROUP = GROUPNAME. Nested groups are allowed. The end of a PVL module is indicated by the keyword END, followed by a semi-colon.

See sections 10.5.2.1 and 10.5.2.2 for examples of the file structure.

10.3.2 XML Format

The information contained in the PVL ISD files is also provided in XML format. See section 10.5.9 for an example of the file structure.

10.4 Delivery Level ISD

10.4.1 Delivery Index (Readme) Contents

The Delivery Index is found in a Top Level README file and a Top Level XML file delivered with each delivery. Each file contains a list of names of the product files and the ISD files, along with copyright information for the entire product delivery. The Top Level File is named for the 12 digit DigitalGlobe Order Item number and the 2 digit delivery increment, for example: 000000077583_01_README.TXT or 000000077583_01_README.XML.

Top Level Delivery Index (README) Contents

FIELD	DESCRIPTION	RANGE	CONDITIONS
version	Version of the ISD.		
copyrightText	Copyright and restricted use text.		
mediaCreation Date	Time of media creation, in UTC.		
orderNumber	12 digit DigitalGlobe Order Item number, underscore, and 2-digit delivery increment.		
fileList	A list of all files in the delivery including path directories.		
areaDesc	Customer supplied description of order. "Null" if no information supplied by the customer.		
DGOrderNo	DigitalGlobe Order Number.		
DGOrderItem No	12-digit DigitalGlobe Order Item Number.		

FIELD	DESCRIPTION	RANGE	CONDITIONS
custOrderNo	Customer supplied order number. 'Null' if no information supplied by the customer.		
custOrderItem No	Customer supplied order item number. 'Null' if no information supplied by the customer.		
collectionStart	Date, in UTC, of first image acquisition.		
collectionStop	Date, in UTC, of final image acquisition.		
countryCode	Two letter country code of center point of order polygon.		
productScale	The NMAS mapping scale of Orthorectified Products	1:50,000 1:25,000 1:24,000 1:12,000 1:10,000 1:5,000 1:4,800 1:2,400 Custom unavailable	Orthorectified Only
numberOf Looks	Indicates whether this is a single product, a stereo pair or a stereo triplet	1, 2, 3	
cloudCover	Estimate of the max cloud-covered fraction of the delivery.	0.000 to 1.000 -999	Not applicable for Metadata Only. -999 if not assessed
NWLat	Latitude of NW corner of the minimum bounding rectangle (MBR) of the order polygon.	8 decimal places	
NWLong	Longitude of NW corner of the minimum bounding rectangle (MBR) of the order polygon.	8 decimal places	
SELat	Latitude of SE corner of the minimum bounding rectangle (MBR) of the order polygon.	8 decimal places	
SELong	Longitude of SE corner of the minimum bounding rectangle (MBR) of the order polygon.	8 decimal places	

Table 20. Top Level Delivery Index (Readme) File

10.4.2 Delivery Layout File

To help in locating portions of your imagery quickly, a diagram illustrating how the order polygon is distributed across multiple pieces of media and multiple strips is included with every order (see Figure 11, Sample Image Layout). This file will be in jpeg format and will be located in the

top level directory of the media. The name of this file will be in the form of 005500637010 (order item id) _01 (increment) _LAYOUT.jpg. In this example, the order polygon is contained within one strip (p001).

DVD Layout for Delivery Order 005500637010_01

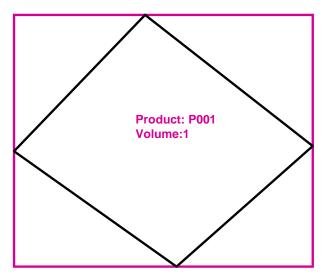


Figure 11. Sample Delivery Layout File.

10.4.3 Delivery Shapefiles

Four separate shapefiles are delivered with each QuickBird imagery product purchased. These are the Strip, Order, Tile, and Product shapefiles.

Shapefile Description

Strip- The Strip shapefile illustrates the boundaries of the strip(s) used to generate the product. This shapefile contains attributes describing information applicable to the strip including off nadir angle and sun azimuth.

Order- The Order Polygon shapefile illustrates the customer's order polygon. This is the Area of Interest that was specified and confirmed by the user at the time that their order was placed. (For Basic product orders, this will be the scene/scenes that comprise the order.) Attributes of this shapefile give general information about the product ordered such as projection and datum the product is delivered in, product creation date, etc.

Tile- The Tile shapefile illustrates how an order polygon has been tiled to fit onto a selected media format. For images that are not tiled (e.g. Basic images) the shapefile will simply show one square tile, illustrating the four corners of tile boundary. This tile shall be named R1C1. The filename of the imagery product is provided for each tile.

Product- The Product shapefile indicates the product components within the delivered product Order Polygon. Multiple product components occur if an order polygon crosses over strip or scene boundaries. Each portion of the polygon within a separate strip or scene is considered a separate product component, denoted as P001, P002, etc.) Additionally, media volume

numbers are listed as an attribute field within the shapefile so that users can identify which volume (e.g. CD 1, 2, or 3) each imagery product file is located on.

Attributes

Three fields are inherently generated when a shapefile is created. These are the FID (Feature ID), Shape, and ID fields. The FID and Shape fields cannot be deleted as they maintain internal information about the geometry and naming convention that is necessary for the shapefile to exist. Table 21 shows the attributes that come with each delivered shapefile as well as an example of the type of information one might expect to see for each of these attribute types. Because the FID and Shape fields are automatically created at the inception of a shapefile, they have been omitted from this table.

	Delivery Shapefile Names and Attributes				
Shapefile Name	Label Attribute	Description	Sample Item	Attribute Type	Attribute Length
	stripDesc	Catalog ID corresponding with associated strip or substrip	10100100017C2400	Text	16
	sunAzimuth	Azimuth angle of the sun measured from north clockwise, in degrees, at the time the strip or substrip was acquired	159.1	F	0.0 to 360.0
		The spacecraft elevation angle measured from nadir to the image center as seen from the spacecraft at the time the strip or substrip was			
Strip	offNadir	acquired	20	F	0.0 to 90.0
Order	orderDesc	Item number corresponding with associated order polygon	92184	Text	12
	custOrd	Optional order number supplied by the customer at time of order placement.	44,968	Text	25
	custOrdItm	Optional order item number supplied by the customer at time of order placement.	1	Text	25
	datum	The Datum in which the product was ordered. NA for Basic products.	WGS84	Text	40

	projection	The projection in which the product was ordered. NA for Basic products.	UTM	Text	60
	bandInfo	Defines type of spectral bands in product. (e.g. PanSharp, Multispectral, All Band, Panchromatic)	MS	Text	30
	createDate	Start date of product creation.	02JUN25001236	Text	20
	tileName	Tile Name	R1C1	Text	6
	fileName	Name of the imagery file.	02JUN25001236- M2AS_R1C1- 000000092184_01_P001.N TF	Text	50
	productDes c	Unique product identifier	P001	Text	4
Tile	volNum	Volume number of the media on which the tile is located.	Vol. 1	Text	20
	prodDesc	Unique product identifier	P001	Text	4
Product	volNum	Volume number of the media on which the tile is located.	Vol. 1-2	Text	20

Table 21. Shapefile Attributes

10.5 Product Component Level ISD

If an Order Polygon crosses strip or scene boundaries, then the imagery product will be divided into product components. Every product component stands on its own, with complete support data such that customers can treat each as an independent image.

10.5.1 Product Component Index (Readme)

The Product Component Index contains a list of names of the image and ISD files that are included for a particular product within a delivery. Other ISD files may or may not be included in a delivery depending on the type of the products in the order (see Table 19). One Product Component Index is provided for each product component of each delivery within the product component subdirectory.

Product Component Index (README) Contents				
Field	DESCRIPTION	CONDITIONS		
copyrightText	Copyright and restricted use text			
version	Version of the ISD			
intro	Introduction. General textual information about the product and file contents.			
BEGIN_GROUP = PRODUCT_	1			
XMLFilename	Product Component XML file			
licenseTxtFilename	Licensing text file name			
IMFFilename	Image metadata file name			
NRDFilename	Non-responsive detector file name			
radFilename	Radiometric calibration file name			
ephemFilename	Ephemeris file name			
attFilename	Attitude file name			
tilFilename	Tile map file name			
geoCalFilename	Geometric calibration file name			
stereoFilename	Stereo file name			
RPC00BFilename	RPC00B file name			
END_GROUP = PRODUCT_1				
END;				

Table 22. Product Component Index (README) Contents.

10.5.2 Image Metadata File

This file specifies the basic characteristics of an image. The following table describes the fields that you will see in the Image Metadata File. Note that these fields are divided into three sections with the following kinds of information:

- 1. Information that should be present for all products.
- 2. Information about images (Basic Imagery, Standard Imagery products). Each image in this category corresponds to a single imaging event.
- 3. Information about cartographic products in a map projection (all Standard Imagery and Orthorectified Imagery products).

Image Metadata Contents				
FIELD	DESCRIPTION	RANGE	CONDITIONS	
version	Version of the ISD			
generationTime	Time of file generation, in UTC.			
productOrderId	Order Item ID of product		Optional if product does not originate from DG or co-producer	
productCatalogID	ID for the corresponding record in DG's catalog (In multi-set products this would be the "group catalog id")		"None" if catalog not kept in DG archive.	
childCatalogID	ID for the corresponding record in DG's catalog (for multi-set products this would be the "child" or "subset" catalog id) In cases where children products do not have separate IMD files, this field may be repeated.		Used only with multi-set products	
imageDescriptor	This is a combination of product name and product type	"Level0", "Metadata", "Basic1A", "Basic1B", "Standard2A", "ORStandard2A", "OrthoRectified3", "Stereo1B"		
productScale	This is the NMAS mapping	1:50,000	Orthorectified Only	
•	scale of the Orthorectified	1:25,000		
	Product	1:24,000		
		1:12,000		
		1:10,000		
		1:5,000		
		1:4,800		
		1:2,500		
		1:2,400		
		Custom		
		unavailable		
productAccuracy	CE90% in meters		If available	
RMSE2D	The Two Dimensional Root Mean Square Error		If available	
bandld	Identifies the spectral band. "P"	Р		
	= Panchromatic, "Multi" = all	Multi		
	Multi-spectral bands (Blue +	RGB		
	Green + Red + Near-IR),	NRG		
	"RGB" = Red + Green + Blue, "NRG" = Near-IR + Red + Green, "BGRN" = Blue +	BGRN		
	Green + Red + Near-IR. Both			

I	DCP and NPC are non	I	1
	RGB and NRG are pan- sharpened color images,		
	stored at the panchromatic		
	spatial resolution.		
panSharpenAlgorithm	Identifies the algorithm used to	HIS	
parisnarpenAigontiini	create pan-sharpened	ПІЗ	
	products:	DCA	
	HIS = Hue, Intensity,	PCA	
	Saturation	LIND	
	PCA = Principal Component	UNB	
	Analysis	20	
	DG = DigitalGlobe Wavelet	DG	
	UNB = University of New	None	
	Brunswick		
numRows	Number of rows.		
numColumns	Number of columns.		
productLevel	Product level that indicates the	Metadata, LV0,	
	radiometric and geometric	LV1A, LV1B, LV2A,	
	corrections for backward	LV3A, LV3B, LV3C,	
	compatibility with QB conventions.	LV3D, LV3E, LV3F,	
		LV3G, LV3X,	
		LV4A, LV3H, LV3I, LV4,	
		,	
productType	Product type	Metadata, Raw,	
		Cal/Val, Basic, Stereo, Standard,	
		Ortho, DEM	
numberOfLooks	Indicates whether this is a	1, 2	
Hamberoreoks	single product or a stereo pair	1, 2	
and the second state of the second		D -	Not a self-relation to BEM
radiometricLevel	Options for radiometric	Raw	Not applicable for a DEM
	correction.		product
		Corrected	
radiometricEnhancement	Option for Color Correction and	DRA/Color	Standard and
	Contrast Enhancement		Orthorectified Products
			only
		DRA/Contrast	
		Off	
bitsPerPixel	The number of bits per pixel in	8, 11, 16	This field will not be
	the product image files. This	0, 11, 10	included in Metadata
	value will be either 8, 11, or 16,		products.
	depending on the product.		producto.
	Note that this is the number of		
	bits stored in the image file for		
	each pixel value as opposed to		
	the number of significant bits		
	that define the pixel brightness		
	value (i.e., for a product which		
	is delivered as 16 bits per		
	pixel, only 11 bits define the		
	brightness value of each pixel).		
	For Raw products, this	1	11 bits per pixel applies
	indicates the number of bits		to raw products only.
	per pixel before compression		to raw products offig.
	or after decompression.		
	or alter accomplession.	1	

compressionType	The type of compression, if any, applied to the product imagery.	None, Downlink	This field will not be included in Metadata products.
			"Downlink" compression applies to Raw products only.
group name is one of (P,N,R	ted for each spectral band in the deal, G,B) to differentiate the band groes and heights above the WGS 84	up names. In this gr	oup, latitudes (Lat) and
ULLon	Geodetic coordinates of the	ULLon = 8	
	upper left pixel of the image.	decimal places	
ULLat		ULLat = 8 decimal places	
ULHAE		ULHAE = 2 decimal places	
URLon	Geodetic coordinates of the upper right pixel of the image.	ULLon = 8 decimal places	
URLat		ULLat = 8 decimal places	
LRLon	Geodetic coordinates of the lower right pixel of the image.	ULLon = 8 decimal places	
LRLat		ULLat = 8 decimal places	
LRHAE		ULHAE = 2 decimal places	
LLLon	Geodetic coordinates of the lower left pixel of the image.	LLLon = 8 decimal places	
LLLat		LLLat = 8 decimal places	
LLHAE		LLHAE = 2 decimal places	
absCalFactor	The conversion factor, K _{nTDI} , that converts the relative radiance values in an image file into corresponding absolute radiance, measured in watts/sq m/ster. (This is calibrated 6000 °K blackbody radiance, integrated over the appropriate spectral window)		-999 = "None" when radiometricEnhancement = "DRA".
effectiveBandwidth	The effective bandwidth (units of microns) is associated with the absCalFactor and it's value is required to calculate top-of-atmosphere spectral radiance.	0.0000 to 1.0000 scientific notation	
END_GROUP = BAND_b			

outputFormat	External product format. GeoTIFF, TIFF, and NITF are image formats for Basic, Stereo, Standard and Orthorectified products, CIB is an image format for orthorectified 1:24,000 and 1:12,000, while DTED, USGS DEM, and ASCII DTM are digital elevation model formats for DEM products.	GeoTIFF	Not applicable for Metadata-Only Products
		TIFF	
		NITF20	
		NITF21	
		NITF21NCDRD	
		CIB	
		DTED	

The following group is repeated for each n = 1,...,numImagesInProduct, i.e., for all images used to create the image product. For single image products (Metadata, Cal/Val, Basic) there is one .IMD file per source image or strip, so the group will appear only once for each product component. For multiple image products (Stereo, Standard, and Orthorectified), the following group will be repeated for each source image in the image product. The index "n" in the group name is a sequential number of the image used to produce the product (1,2,3,...,n) to differentiate the image group names.

BEGIN_GROUP = IMAGE_r)		
satId	Satellite Id.	QB01, QB02,	
mode	Sensor Mode	FullSwath, CenterSwath	
scanDirection	Sensor scan direction	Forward, Reverse	
Catld	DigitalGlobe catalog ld for the raw data used in this product		
TLCTime	Absolute time of the first time- tagged line count record, in UTC, used in the product component.		Only for Basic products
numTLC	Number of time-tagged line count records in the TLCList used in the product component.		
TLCList	List of time-tagged line count (TLC) records. Each TLC record consists of IneNumber (I) timeOffset (F) lineNumber is the image line number for a line in the product component. This number will be negative if the TLC record precedes the product component. timeOffset is the recorded time tag for this line, in seconds after TLCTime.		

1	1 m // 00 / 111 //	İ	1
	The timeOffset will be negative		
	if the image is in the reverse		
Condition Time	scan direction.		
firstLineTime	Exposure time for the first line		
	in the product component, in UTC		
avgLineRate	Average number of image lines	avgLineRate = 2	
avgLilleRate	exposed per second	decimal places	
<u> </u>	' '	decimal places	
exposureDuration	Duration of the exposure		
	interval for each line, in		
minCollectedRowGSD	seconds.	As collected, 3	
mincollectedRowGSD	Minimum, original, collected GSD of the product in the row	decimal places	The Pan GSD is used for
	direction, in meters.	decimal places	Panchromatic and Pan-
	direction, in meters.		sharpened products; the
			MS GSD is used for MS
			products.
maxCollectedRowGSD	Maximum, original, collected	As collected, 3	
	GSD of the product in the row	decimal places	
	direction, in meters.	A !!	
MeanCollectedRowGSD	Mean, original, collected GSD	As collected, 3	
	of the product in the row	decimal places	
minCollectedColGSD	direction, in meters. Original collected GSD of the	As collected, 3	
MincollectedColGSD	product in the column direction,	decimal places	
	in meters.	decimal places	
maxCollectedColGSD	Maximum, original, collected	As collected, 3	
maxooncotcuoorcob	GSD of the product in the	decimal places	
	column direction, in meters.	accimal places	
meanCollectedColGSD	Original collected GSD of the	As collected, 3	
	product in the column direction,	decimal places	
	in meters.	·	
meanCollectedGSD	Mean GSD of the original,	As collected, 3	
	collected row and column	decimal places	
	GSD, in meters.		
rowUncertainty	Mean position uncertainty in		
colUncertainty	line and pixel directions, in		
	meters. These are 3-sigma,		
minSunAz,	one-dimensional values. Minimum, maximum, and	0.0 to 360.0	
-	mean azimuth angle of the sun	0.0 10 300.0	
maxSunAz,	measured from north		
meanSunAz	clockwise, in degrees.		
minSunEl,	Minimum, maximum, and	±90.0	
maxSunEl,	mean elevation angle of the		
meanSunEl	sun from horizontal, in		
	degrees.		
minSatAz,	Minimum, maximum, and	0.0 to 360.0	
maxSatAz,	mean azimuth angle of the		
meanSatAz	satellite with respect to the		
main CotEl	center line, in degrees.	100.0	
minSatEl,	Minimum, maximum, and	±90.0	
maxSatEl,	mean elevation angle of the satellite with respect to the		
meanSatEl	center line, in degrees.		
	Joshici iiio, iii dogrees.	I	

minInTrackViewAngle, maxInTrackViewAngle, meanInTrackViewAngle	Minimum, maximum, and mean dihedral angle measured at the spacecraft from the nominal spacecraft YZ plane to the plane that contains the ground projection of the product center-line and the spacecraft Y-axis, in degrees. A positive angle indicates the sensor is looking forward.	±90.0	
minCrossTrackViewAngle, maxCrossTrackViewAngle, meanCrossTrackViewAngle	Minimum, maximum, and mean dihedral angle measured at the spacecraft from the nominal spacecraft XZ plane to the plane that contains the ground projection of the product center-line and the spacecraft X-axis, in degrees. A positive angle indicates the sensor is looking to the right.	±90.0	
MinOffNadirViewAngle, maxOffNadirViewAngle, meanOffNadirViewAngle	The spacecraft elevation angle measured from nadir to the product center-line as seen from the spacecraft	0.0 to 90.0	
PNIIRS	Mean predicted image quality on the National Imagery Interpretability Rating Scale (NIIRS), as computed by the General Image Quality Equation (GIQE).	0.0 to 9.0	Not applicable for Metadata-Only Products
cloudCover	Estimate of the max cloud- covered fraction of the product component.	0.000 to 1.000 -999	Not applicable for Metadata-Only -999 if not assessed
resamplingKernel	Method used to resample the image. "NULL"=no resampling kernel,	NULL	
	"NN"=nearest neighbor,	NN	
	"BL"=bilinear,	BL	
	"CC"=cubic convolution,	CC	
	"DS8"=8 point sinc,	DS8	
	"DS16"=16 point sinc,	DS16	
	"K16"=16 pointed Kaiser sinc,	K16	
	"MTF"=Modulation Transfer	MTF	
	Function,		
	"PS"=Pan sharpening.	PS	
	"UserDefined"	UserDefined	
TDILevel	Level of the time-delayed	Integer	
	integration, as commanded to		
position//powledgeCro	the spacecraft.	D	
positionKnowledgeSrc	Source of knowledge of the satellite position. "R" =	R P	
	Refined, "P" = Predicted.	F	
	rteimea, i – i ledictea.		

attitudeKnowledgeSrc	Source of knowledge of the	R	
	satellite attitude. "R" =	Р	
un a Na anna ha a	Refined, "P" = Predicted.		
revNumber	Orbit revolution number at the time of exposure.		
END GROUP = IMAGE n	timo di expedere.		
BEGIN_GROUP = MAP_PR	OJECTED_PRODUCT		Only for map-projected (Standard and Orthorectified) products.
earliestAcqTime	Acquisition time (UTC) of the first line of the earliest image contained in the product component.		
latestAcqTime	Acquisition time (UTC) of the first line of the latest image contained in the product component.		For a single image product this value will be the same as earliestAcqTime
datumName	Name of the datum specified for the map projection when the product was ordered.	See the DigitalGlobe web site for the list of datum names.	
semiMajorAxis	Length of semi-major axis of the datum ellipsoid, in meters.	semiMajorAxis = 4 decimal places	
inverseFlattening	Inverse flattening of the datum ellipsoid, 1/f. Some useful relationships between flattening (f), semi-major axis (a), semi-minor axis (b), and eccentricity squared (e^2) are: $f = (a - b) / a$ $e^2 = (a^2 - b^2) / a^2$ $= 2f - f^2$ $b = a (1 - f)$	inverseFlattening = 9 decimal places	
datumOffset	X, Y, Z offset of the center of the datum ellipsoid relative to the origin of the WGS 84 system, in meters.		
mapProjName	Name of the map projection specified when the product was ordered.	See the DigitalGlobe web site for the list of map projection names.	
mapProjCode	Integer code for the map projection that was used. This is an index into the table of generalized projections in Reference 6.		
mapZone	Zone used for the map projection.		Only for UTM and State Plane projections
mapHemi	Code indicating the hemisphere used for the map projection.	N S	Only for UTM projection

mapProjParam	A list of up to 15 parameters that describe the particular map projection. The meaning of each parameter depends on the map projection selected in mapProjCode. Note: all latitude and longitude values are in decimal degrees, not degreesminute-seconds.	mapProjParam = 9 decimal places	
productUnits	Units of projected product	DD = Decimal Degrees M = Meters F = Feet USF = US Survey Feet	
originX	Easting of the center of the upper left pixel of the image, in productUnits.	originX = 8 decimal places	
originY	Northing of the center of the upper left pixel of the image, in productUnits.	originY = 8 decimal places	
orientationAngle	Azimuth angle measured clockwise from map north to the "up" direction at the center of the image, in degrees. This is a rotation between raster image and the map coordinate systems. Since map-projected products are always Map-North up, this is always zero.	0	
colSpacing	GSD of the image in the column direction, in productUnits	colSpacing = 2 decimal places for non- geographic projected products colSpacing = scientific notation for geographic projected products	
rowSpacing	GSD of the image in the row direction, in productUnits.	rowSpacing = 2 decimal places for non- geographic projected products rowSpacing = scientific notation for geographic projected products	
productGSD	GSD of the product in meters	2 decimal places	Standard and Ortho products only.

edgeMatch	Indication of the use of edge matching for orthomosaic	On	Orthorectified products only
	products, i.e. bundle adjusted.	Off	
colorBalance	Indication of the use of color balance for ortho mosaic	On	Orthorectified products only
	products.	Off	
ULX	Easting, northing, and height above the ellipsoid of the upper	ULX = 8 decimal places	
ULY	left pixel of the image in the specified datum and map	ULY = 8 decimal places	
ULH	projection, in productUnits. ULH in meters. Includes blackfill	ULH = 2 decimal places	
URX	Easting, northing, and height above the ellipsoid of the upper	URX = 8 decimal places	
URY	right pixel of the image in the specified datum and map	URY = 8 decimal places	
URH	projection, in productUnits. ULH in meters. Includes blackfill	URH = 2 decimal places	
LRX	Easting, northing, and height above the ellipsoid of the lower	LRX = 8 decimal places	
LRY	right pixel of the image in the specified datum and map	LRY = 8 decimal places	
LRH	projection, in productUnits. ULH in meters. Includes blackfill	LRH = 2 decimal places	
LLX	Easting, northing, and height above the ellipsoid of the lower	LLX = 8 decimal places	
LLY	left pixel of the image in the specified datum and map projection, in productUnits.	LLY = 8 decimal places	
LLH	ULH in meters. Includes blackfill	LLH = 2 decimal places	
DEMCorrection	Level of the DEM used for the	"none"	
	terrain correction.	"Base Elevation"	Stereo Products use only "Base Elevation".
		"Coarse DEM"	Standard and Orthorectified Products use anything except "none".
		"Fine DEM"	All other products use "none".
		"Customer Supplied DEM"	
		"GTOPO30" "SRTM1",	
		"SRTM2"	
		"DTED1" "DTED2" "DTED3" "DTED4" "DTED5"	

terrainHAE	The constant value of the height above the ellipsoid that was used for the terrain correction, in meters.		Only when DEMCorrection = "Base Elevation".
numGCP	Number of ground control points used to create this product.		
END_GROUP = MAP_PRO	JECTED_PRODUCT	•	
END;			

Table 23. ISD Image Metadata File.

Image Metadata File - Basic Imagery

This section contains a complete example of an Image Metadata File for Basic Imagery.

```
version = "AA";
generationTime = 2006-01-18T22:39:26.000000Z;
productOrderId = "005366075010_01_P001";
productCatalogId = "9010010002575B00";
childCatalogId = "2020010002575E00";
imageDescriptor = "Basic1B";
bandId = "P";
panSharpenAlgorithm = "None";
numRows = 16132;
numColumns = 27552;
productLevel = "LV1B";
productType = "Basic";
numberOfLooks = 1;
radiometricLevel = "Corrected";
bitsPerPixel = 16;
compressionType = "None";
BEGIN_GROUP = BAND_P
       ULLon = 0.12848615;
       ULLat = 52.28230413;
        ULHAE = 54.51;
       URLon =
                  0.38184538;
       URLat = 52.27780535;
       URHAE = 63.19;
       LRLon = 0.37944202;
LRLat = 52.18646042;
       LRHAE = 145.76;
       LLLon =
                 0.12666018;
       LLLat =
                 52.19140586;
       LLHAE =
                 61.51;
       absCalFactor = 4.656600e-02;
       effectiveBandwidth = 3.980000e-01;
END_GROUP = BAND_P
outputFormat = "NITF20";
BEGIN_GROUP = IMAGE_1
       satId = "QB02";
       mode = "FullSwath";
       scanDirection = "Forward";
       CatId = "1010010001B72600";
       TLCTime = 2003-03-14T10:54:05.372682Z;
       numTLC = 2;
       TLCList = (
        (0, 0.000000),
        (16132, 2.337971)
                               );
        firstLineTime = 2003-03-14T10:54:05.372681Z;
        avgLineRate = 6900.00;
        exposureDuration = 0.0026087;
       minCollectedRowGSD = 0.628;
       maxCollectedRowGSD = 0.629;
       meanCollectedRowGSD = 0.628;
minCollectedColGSD = 0.628;
       maxCollectedColGSD = 0.628;
       meanCollectedColGSD = 0.628;
       meanCollectedGSD = 0.628;
       rowUncertainty = 38.63;
colUncertainty = 39.04;
       minSunAz = 157.7;
       maxSunAz = 157.7;
       meanSunAz = 157.7;
       minSunEl = 33.1;
       maxSunEl = 33.2;
meanSunEl = 33.1;
       minSatAz = 126.0;
       maxSatAz = 137.0;
       meanSatAz = 132.5;
```



```
minSatEl = 79.2;
       maxSatEl = 80.2;
       meanSatEl = 79.6;
       minInTrackViewAngle = -5.1;
       maxInTrackViewAngle = -4.3;
       meanInTrackViewAngle = -4.8;
       minCrossTrackViewAngle = 8.0;
       maxCrossTrackViewAngle = 8.3;
       meanCrossTrackViewAngle = 8.2;
       minOffNadirViewAngle = 9.4;
maxOffNadirViewAngle = 9.4;
       meanOffNadirViewAngle = 9.4;
       PNIIRS = 4.4;
       cloudCover = -999.000;
       resamplingKernel = "CC";
       TDILevel = 18;
       positionKnowledgeSrc = "R";
       attitudeKnowledgeSrc = "R";
       revNumber = 7873;
END_GROUP = IMAGE_1
END;
```

10.5.2.1 Image Metadata File – Standard Imagery

This section contains a complete example of an Image Metadata File for Standard Imagery.

```
version = "AA";
generationTime = 2006-01-18T23:01:15.000000Z;
productOrderId = "005366076010_01_P001";
productCatalogId = "9010010002576B00";
childCatalogId = "2020010002576C00";
imageDescriptor = "Basic1B";
bandId = "P";
panSharpenAlgorithm = "None";
numRows = 31192;
numColumns = 27552;
productLevel = "LV1B";
productType = "Basic";
numberOfLooks = 1;
radiometricLevel = "Corrected";
bitsPerPixel = 16;
compressionType = "None";
BEGIN_GROUP = BAND_P
       ULLon = 121.49001073;
       ULLat = 25.16744119;
ULHAE = 431.56;
       URLat = 25.16637071;
URHAE = 110 00
       URLon = 121.67976665;
       LRLon = 121.67959076;
       LRLat = 24.98477902;
LRHAE = 332.95;
                  332.95;
       LLLon = 121.49024593;
       LLLat = 24.98403212;
       LLHAE =
                  86.62;
       absCalFactor = 4.656600e-02;
       effectiveBandwidth = 3.980000e-01;
END GROUP = BAND P
outputFormat = "GeoTIFF";
BEGIN GROUP = IMAGE 1
       satId = "QB02";
       mode = "FullSwath";
       scanDirection = "Forward";
       CatId = "10100100017C2400";
       TLCTime = 2002-12-15T02:38:11.631232Z;
       numTLC = 2;
       TLCList = (
        (0, 0.000000),
        (31192, 4.520580)
                               );
        firstLineTime = 2002-12-15T02:38:11.631232Z;
```



```
avgLineRate = 6900.00;
       exposureDuration = 0.0026087;
       minCollectedRowGSD =
                              0.647;
       maxCollectedRowGSD =
                              0.650;
       meanCollectedRowGSD = 0.648;
       minCollectedColGSD =
                              0.690;
       maxCollectedColGSD = 0.698;
       meanCollectedColGSD = 0.694;
       meanCollectedGSD = 0.671;
       rowUncertainty = 37.35;
colUncertainty = 50.83;
       minSunAz = 159.1;
       maxSunAz = 159.1;
       meanSunAz = 159.1;
       minSunEl = 38.8;
       maxSunEl = 39.0;
       meanSunEl = 38.9;
       minSatAz = 264.4;
       maxSatAz = 275.6;
       meanSatAz = 269.8;
       minSatEl = 68.0;
       maxSatEl = 68.9;
       meanSatEl = 68.5;
       minInTrackViewAngle = -3.6;
       maxInTrackViewAngle = -2.1;
       meanInTrackViewAngle = -2.8;
       minCrossTrackViewAngle = -20.1;
       maxCrossTrackViewAngle = -19.5;
       meanCrossTrackViewAngle = -19.8;
       minOffNadirViewAngle = 20.0;
       maxOffNadirViewAngle = 20.0;
       meanOffNadirViewAngle = 20.0;
       PNIIRS = 4.3;
       cloudCover = 0.000;
       resamplingKernel = "DS8";
       TDILevel = 18;
       positionKnowledgeSrc = "R";
       attitudeKnowledgeSrc = "R";
       revNumber = 6499;
END_GROUP = IMAGE_1
END;
```

10.5.2.2 Image Metadata File – Orthorectified Imagery

```
version = "AA";
generationTime = 2006-01-19T21:15:18.000000Z;
productOrderId = "005366083010_01_P001";
productCatalogId = "9020010002578900";
childCatalogId = "2040010002578A00";
imageDescriptor = "OrthoRectified3";
productScale = "1:50,000";
productAccuracy = 25.40;
RMSE2D = 15.44;
bandId = "RGB";
panSharpenAlgorithm = "UNB";
numRows = 21773;
numColumns = 16054;
productLevel = "LV3A";
productType = "Ortho";
numberOfLooks = 1;
radiometricLevel = "Corrected";
radiometricEnhancement = "Off";
bitsPerPixel = 16;
compressionType = "None";
BEGIN_GROUP = BAND_R
       ULLon = -112.08921873;
       ULLat = 33.55152403;
ULHAE = 335.00;
       URLon = -111.98547821;
       URLat = 33.55239330;
       URHAE = 463.39;
       LRLon = -111.98414440;
```



```
LRLat =
                 33.43458512;
       LRHAE =
                315.00;
       LLLon = -112.08774457;
       LLLat = 33.43371970;
LLHAE = 294.00;
       absCalFactor = 1.267350e-02;
       effectiveBandwidth = 7.100000e-02;
END_GROUP = BAND_R
BEGIN_GROUP = BAND_G
       ULLon = -112.08921873;
       ULLat = 33.55152403;
       ULHAE = 335.00;
       URLon = -111.98547821;
       URLat = 33.55239330;
URHAE = 463.39;
       LRLon = -111.98414440;
       LRLat = 33.43458512;
LRHAE = 315.00;
       LLLon = -112.08774457;
       LLLat = 33.43371970;
LLHAE = 294.00;
       absCalFactor = 1.438470e-02;
       effectiveBandwidth = 9.900000e-02;
END_GROUP = BAND_G
BEGIN_GROUP = BAND_B
       ULLon = -112.08921873;
       ULLat = 33.55152403;
ULHAE = 335.00;
       URLon = -111.98547821;
       URLat = 33.55239330;
URHAE = 463.39;
       LRLon = -111.98414440;
       LRLat = 33.43458512;
       LRHAE =
                 315.00;
       LLLon = -112.08774457;
       LLLat = 33.43371970;
       LLHAE = 294.00;
       absCalFactor = 1.604120e-02;
       effectiveBandwidth = 6.800000e-02;
END_GROUP = BAND_B
outputFormat = "GeoTIFF";
BEGIN_GROUP = IMAGE_1
       satId = "QB02";
       mode = "FullSwath";
       scanDirection = "Forward";
       CatId = "101001000183E600";
       firstLineTime = 2002-12-28T18:06:07.594644Z;
       avgLineRate = 1725.03;
       exposureDuration = 0.000579701;
       minCollectedRowGSD = 0.629;
       maxCollectedRowGSD = 0.631;
       meanCollectedRowGSD =
                                0.629;
       minCollectedColGSD = 0.659;
       maxCollectedColGSD = 0.662;
       meanCollectedColGSD = 0.660;
       meanCollectedGSD = 0.645;
       rowUncertainty = 17.61;
       colUncertainty =
                           20.04;
       minSunAz = 157.7;
       maxSunAz = 157.8;
       meanSunAz = 157.8;
       minSunEl = 29.9;
maxSunEl = 30.0;
       meanSunEl = 29.9;
       minSatAz = 84.4;
       maxSatAz = 94.9;
       meanSatAz = 90.0;
       minSatEl = 73.4;
       maxSatEl = 73.9;
       meanSatEl = 73.7;
       minInTrackViewAngle =
                                 0.6;
       maxInTrackViewAngle =
```



```
meanInTrackViewAngle =
       minCrossTrackViewAngle = 15.2;
maxCrossTrackViewAngle = 15.5;
       meanCrossTrackViewAngle = 15.3;
       minOffNadirViewAngle = 14.9;
       maxOffNadirViewAngle = 14.9;
meanOffNadirViewAngle = 14.9;
       PNIIRS = 4.3;
       cloudCover = -999.000;
        resamplingKernel = "PS";
       TDILevel = 24;
       positionKnowledgeSrc = "R";
       attitudeKnowledgeSrc = "R";
       revNumber = 6708;
END_GROUP = IMAGE_1
BEGIN_GROUP = MAP_PROJECTED_PRODUCT
        earliestAcqTime = 2002-12-28T18:06:10.182333Z;
        latestAcqTime = 2002-12-28T18:06:10.182333Z;
        datumName = "WE";
        semiMajorAxis = 6378137.0000;
        inverseFlattening = 298.257223563;
       datumOffset = (
             0.000,
             0.000,
             0.000);
        mapProjName = "UTM";
       mapProjCode = 1;
       mapZone = 12;
       mapHemi = "N";
       mapProjParam = (
          0.00000000,
          0.000000000,
          0.000000000,
          0.000000000,
          0.000000000,
          0.000000000,
          0.000000000,
          0.00000000,
          0.000000000,
          0.00000000,
          0.000000000,
          0.000000000,
          0.000000000,
          0.00000000,
          0.000000000);
        productUnits = "M";
       originX = 398885.09999973;
originY = 3712962.89999963;
       orientationAngle =
                               0.0;
       colSpacing = 0.60;
       rowSpacing = 0.60;
       productGSD = 0.60;
        IJLX = 398885.09999973;
        ULY = 3712962.89999963;
        ULH =
                  335.00;
       URX = 408516.89999987;
       URY = 3712962.89999964;
       URH =
                463.39;
       LRX = 408516.89999987;
       LRY = 3699899.69999963;
       LRH =
                 315.00;
       LLX = 398885.09999974;
        LLY = 3699899.69999962;
       LLH =
                 294.00;
       DEMCorrection = "Fine DEM";
       numGCP = 0;
END_GROUP = MAP_PROJECTED_PRODUCT
END;
```


10.5.3 Product Browse file

The product browse file is a compressed JPEG file of the delivered product. The product browse file will be consistent with the bands ordered for the final product, except for multispectral and 4-band pan-sharpened products for which natural color browse imagery will be supplied. Figure 12 is sample of a natural color-product browse file.

Figure 12. Sample Product Browse File

10.5.4 Tile Map File

Large images are tiled into sub-images and distributed as a group of sub-image files, called tiles. Tiles are not uniform in size. If the image does not fill the whole tile, blackfill will be added to the top and left of the imagery, but removed from the bottom and right of the imagery in order to maintain a uniform upper left pixel and reduce tile sizes. Blackfill will only be present in the upper left corner of a product if a tiling origin is specified that does not correspond to the upper left corner of the Minimum Bounding Rectangle of the order polygon. If no tiling origin is specified, the upper left corner of the order poly will be the tiling origin by default. The tile map file in the ISD provides the row and column offset and geodetic coordinates for the center of the pixel of the four corners of each tile, relative to the image. For map-projected image products, it also provides the map projected coordinates of the center of the four corner pixels in the tile. Because the coordinates are based on the center of the pixel, there is a one pixel gap between tile boundaries as detailed in the tile map file, and shapefiles generated from these coordinates. Only Standard and Orthorectified Imagery products can be tiled.

	Tile Map Contents		
FIELD	DESCRIPTION	RANGE	CONDITIONS

	Tile Map Contents	
	Identifies the spectral band. Identifies the	Р
	spectral band.	Multi
	"P" = Panchromatic, "Multi" = all Multi-spectral bands (Blue + Green + Red + Near-IR),	RGB
	"RGB" = Red + Green + Blue, "NRG" = Near-	NRG
bandld	IR + Red + Green, "BGRN" = Blue + Green + Red + Near-IR. Both RGB and NRG are pansharpened color images, stored at the panchromatic spatial resolution.	BGRN
numTiles	The number of tiles for this product. For a Cal/Val Level 1A product, this is the number of detector arrays or subarrays.	
tileSizeX	Size of the X component (columns) of each tile in either product units or pixels	
tileSizeY	Size of the Y component (lines) of each tile in either product units or pixels	
tileUnits	Units of tiles	Pixels
		Meters
		Feet
tileOverlap	Overlap of tiles, in tile units	
The following gro	up is repeated for n = 1,,numTiles, i.e., once for	r each of the tiles.
BEGIN_GROUP = TILE_n		
filename	Filename of the tile.	
ULColOffset	Column offset of the upper left pixel of this tile, relative to the upper left pixel of the base image.	>=0
ULRowOffset	Row offset of the upper left pixel of this tile, relative to the upper left pixel of the base image.	>=0
URColOffset	Column offset of the upper right pixel of this tile, relative to the upper left pixel of the base image.	>=0
URRowOffset	Row offset of the upper right pixel of this tile, relative to the upper left pixel of the base image.	>=0
LRColOffset	Column offset of the lower right pixel of this tile, relative to the upper left pixel of the base image.	>=0
LRRowOffset	Row offset of the lower right pixel of this tile, relative to the upper left pixel of the base image.	>=0

	Tile Map Contents			
LLColOffset	Column offset of the lower left pixel of this tile, relative to the upper left pixel of the base image.	>=0		
LLRowOffset	Row offset of the lower left pixel of this tile, relative to the upper left pixel of the base image.	>=0		
ULLon	The geodetic longitude of the center of the upper left pixel in the tile, in degrees.	180.00000000±		
		ULLon = 8 decimal places		
ULLat	The geodetic latitude of the center of the upper left pixel in the tile, in degrees.	90.00000000±		
		ULLat = 8 decimal places		
URLon	The geodetic longitude of the center of the upper right pixel in the tile, in degrees.	180.00000000±		
		ULLon = 8 decimal places		
URLat	The geodetic latitude of the center of the upper right pixel in the tile, in degrees.	90.00000000±		
		ULLat = 8 decimal places		
LRLon	The geodetic longitude of the center of the lower right pixel in the tile, in degrees.	180.00000000±		
		ULLon = 8 decimal places		
LRLat	The geodetic latitude of the center of the lower right pixel in the tile, in degrees.	90.00000000±		
		ULLat = 8 decimal places		
LLLon	The geodetic longitude of the center of the lower left pixel in the tile, in degrees.	180.00000000±		
		ULLon = 8 decimal places		
LLLat	The geodetic latitude of the center of the lower left pixel in the tile, in degrees.	90.00000000±		

Tile Map Contents			
		ULLat = 8 decimal places	
ULX	Easting of the center of the upper left pixel of the tile in the specified map projection, datum, and units of the product.	8 decimal places	For Standard and Orthorectified
ULY	Northing of the center of the upper left pixel of the tile in the specified map projection, datum, and units of the product.	8 decimal places	products, only.
URX	Easting of the center of the upper right pixel of the tile in the specified map projection, datum, and units of the product.	8 decimal places	
URY	Northing of the center of the upper right pixel of the tile in the specified map projection, datum, and units of the product.	8 decimal places	
LRX	Easting of the center of the lower right pixel of the tile in the specified map projection, datum, and units of the product.	8 decimal places	
LRY	Northing of the center of the lower right pixel of the tile in the specified map projection, datum, and units of the product.	8 decimal places	
LLX	Easting of the center of the lower left pixel of the tile in the specified map projection, datum, and units of the product.	8 decimal places	
LLY	Northing of the center of the lower left pixel of the tile in the specified map projection, datum, and units of the product.	8 decimal places	
END_GROUP = TILE_n	•		
END;			

Table 24. ISD Tile Map File.

10.5.5 Attitude File

This file contains sampled mean and covariance estimates of the attitude of the spacecraft system relative to the ECF system. These files are produced for a continuous imaging period (a scene), and span the period from at least four seconds before the start of imaging to at least four seconds after the end of imaging.

Attitude File			
FIELD	DESCRIPTION	RANGE	CONDITIONS
SatId	Satellite Id.	QB02	
RevNumber	Orbit revolution number at startTime.		
	The revolution number is incremented at		
	the ascending node crossing each orbit.		
StripId	Unique 6 character strip Id. Data is		
	represented as an ASCII-encoded		
Type	hexadecimal integer. Type of data . "I" = initial attitude, "R" =		
туре	refined attitude.	R	
Version	Version of the data. "A" for first version,	A, B, C, etc.	
7 0101011	"B" for second, etc.	7 1, 2, 3, 313	
GenerationTime	Time of file generation, in UTC.		
StartTime	Time of first data point, in UTC.		
NumPoints	Number of points in the file.		
TimeInterval	Time interval between points, in	TimeInterval = 3	
	seconds.	decimal places	
AttList	List of attitude data. This is a time-	AttList = 16 decimal	
	sequential list of records for point =	places	
	1,,numPoints. Each record is a list with		
	15 fields in the following order: (Type of		
	field is in parenthesis).		
	point (I); Following is the attitude quaternion for		
	this point:		
	2. q1 (D);		
	3. q2 (D);		
	4. q3 (D);		
	5. q4 (D);		
	Following are the upper-right elements of		
	the attitude quaternion covariance matrix		
	for this point:		
	1. (1,1) element (F)		
	2. (1,2) element (F)		
	3. (1,3) element (F)		
	4. (1,4) element (F)		
	5. (2,2) element (F) 6. (2,3) element (F)		
	7. (2,4) element (F)		
	8. (3,3) element (F)		
	9. (3,4) element (F)		
	10. (4,4) element (F)		
	The quaternions describe the rotation of		
	the spacecraft coordinate system relative		
	to the ECF frame.		
END;			

Table 25. ISD Attitude File.

10.5.6 Ephemeris File

This file contains sampled mean and covariance estimates of the position of the spacecraft system relative to the ECF system. These files are produced for a continuous imaging period (a scene), and span the period from at least four seconds before the start of imaging to at least four seconds after the end of imaging.

Ephemeris File			
FIELD	DESCRIPTION	RANGE	CONDITIONS
satld	Satellite Id.	QB02	
revNumber	Orbit revolution number at startTime.		
	The revolution number is incremented at		
	the ascending node crossing each orbit.		
stripId	Unique 6 character strip Id. Data is		
	represented as an ASCII-encoded		
	hexadecimal integer.		
type	Type of data . "I" = initial ephemeris, "R"	1	
	= refined ephemeris.	R	
Version	Version of the data. "A" for first version,	A, B, C, etc.	
	"B" for second, etc.		
GenerationTime	Time of file generation, in UTC.		
StartTime	Time of first data point, in UTC.		
NumPoints	Number of points in the file.		
TimeInterval	Time interval between points, in	TimeInterval = 3	
	seconds.	decimal places	
EphemList	List of ephemeris data. This is a time-	EphemList = 16	
	sequential list of records for point =	decimal places	
	1,,numPoints. Each record is a list with		
	13 fields in the following order (field type		
	is in parenthesis):		
	1. point (I);		
	Following is the spacecraft position and		
	velocity for this point:		
	2. X position (D);		
	3. Y position (D);		
	4. Z position (D);		
	5. X velocity (D);		
	6. Y velocity (D);		
	7. Z velocity (D);		
	Folowing are the upper-right elements of		
	the position covariance matrix for this		
	point:		
	8. (1,1) element (F);		
	9. (1,2) element (F);		
	10. (1,3) element (F);		
	11. (2,2) element (F);		
	12. (2,3) element (F);		
	13. (3,3) element (F);		
	All measurements are in the ECF		
	coordinate system. Positions are in		
	meters and velocities in m/sec. Positon		
	variances and covariances are in m ² .		
END;			

Table 26. ISD Ephemeris File.

10.5.7 Geometric Calibration File

This file contains standard photogrammetric parameters of a virtual camera that models the imaging and optical system (the QuickBird camera). Most of these are intrinsic parameters that relate a ray inside the camera (behind the optics) to a particular pixel address on one of the linear detector arrays. The file also contains some information that is needed to compute the position and orientation of the QuickBird camera for any given line of an image. This information, also known as the exterior orientation of the camera, can be computed from the following sources:

- (1) The position and orientation of the spacecraft coordinate system relative to the Earth Centered Fixed (ECF) coordinate system, as provided in the attitude file and the ephemeris file.
- (2) The position and orientation of the camera with respect to the spacecraft coordinate system. This information is relatively constant, and is provided in the geometric calibration file.

The Basic Imagery camera models the system as a moving camera with a single continuous linear detector array on the focal plane for each spectral band.

	Geometric Camera Calib	ration File	
FIELD	DESCRIPTION	RANGE	CONDITIONS
effectiveTime	Effective date and time of this calibration, in UTC.		
satId	Satellite Id.	QB02	
geoModelLevel	Specifies the geometric model. "LV1B"	LV1B	
	is for Basic Imagery products.		
	RINCIPAL_DISTANCE		
generationTime	Time of group generation, in UTC.		
PD	The principal distance of the camera, in	PD = 3 decimal	
	millimeters. This is the perpendicular	places	
	distance from the perspective center to the focal plane		
FND GROUP = PRI	NCIPAL_DISTANCE		
	PTICAL_DISTORTION		
generationTime	Time of group generation, in UTC.		
polyOrder	Order of each of the bivariate image	0,1,2,3,4,5	
	correction polynomials. An N degree		
	polynomial will have (N+1)*(N+2)/2		
al iat	terms.	AList = 6 decimal	
aList	List of correction coefficient for the camera X coordinate of an image point.	places	
	There are (polyOrder+1)*(polyOrder+2)/2	piaces	
	elements in the list.		
bList	List of correction coefficient for the	BList = 6 decimal	
	camera Y coordinate of an image point.	places	
	There are (polyOrder+1)*(polyOrder+2)/2		
END ODOLID OD	elements in the list.		
	TICAL_DISTORTION		
generationTime	ERSPECTIVE_CENTER Time of group generation, in UTC.		
CX	The perspective center of the camera in	CX = 3 decimal	
CY	the spacecraft coordinate system, in	places	
CZ	meters. This is the origin of the camera	CY = 3 decimal	
	coordinate system.	places	
		CZ = 3 decimal	
END ODOUB DE		places	
BEGIN_GROUP = PER	RSPECTIVE_CENTER		
generationTime	Time of group generation, in UTC.		
qcs1	The unit quaternion for the attitude of the	gcs1 = 16 decimal	
qcs2	camera coordinate system in the	places	
qcs3	spacecraft body system, i.e., the	qcs2 = 16 decimal	
qcs4	quaternion for the rotation of the	places	
	spacecraft body frame into the virtual	qcs3 = 16 decimal	
	frame. q ^c _s . qcs4 is the scalar part.	places	
		qcs4 = 16 decimal places	
END_GROUP = CAN	I MERA ATTITUDE	piaces	
	ETECTOR_MOUNTING		
generationTime	Time of group generation, in UTC.		
The following group i	is repeated for each spectral band in the deli ,R,G,B) to differentiate the band group name		ne index b in the group
BEGIN_GROUP = B		···	
bandld	Identifies the spectral band.	Р	
Januara	"P" = Panchromatic, "N" = Near –IR, "R"	N	
	= Red, "G" = Green, "B" = Blue.	R	
		G	
		В	

The following group is repeated for $n = 1,,numDetArr$, i.e., for each of the linear detector arrays in the spectral band. For the Basic Imagery camera model, $n = 1$.			
BEGIN_GROUP = D	ETECTOR_ARRAY_n		
detArrld	Specifies the detector array ld. (1 for the Basic Imagery camera model.)	1	
detOriginX detOriginY	X and Y coordinates of the pixel 0 of the linear detector array in the camera coordinate system, in mm.	detOriginX = 16 decimal places detOriginY = 16 decimal places	
detRotAngle Rotation of the detector coordinate system as measured in the camera coordinate system, in degrees. Positive values indicates a positive rotation of the detector coordinate system about the camera +Z axis.			
detPitch	The pitch or pixel spacing of the detector in the detector Y direction, in mm. This is the distance between centers of adjacent pixels in the array.	detPitch = 16 decimal places	
END_GROUP = DET	END_GROUP = DETECTOR_ARRAY_n		
END_GROUP = BAND_b			
END_GROUP = DETECTOR_MOUNTING			
END;			

Table 27. ISD Geometric Calibration File.

10.5.8 Rational Polynomial Coefficients

This section describes the PVL format RPC00B file and part of the XML file. It contains the coefficients for Rapid Positioning Capability, also called Rational Polynomial Coefficients (RPC). This is a mathematical mapping from object space coordinates to image space coordinates. This mapping includes non-ideal imaging effects, such as lens distortion, light aberration, and atmospheric refraction.

RPC00Bs express the normalized column and row values in an image, (c_n, r_n) , as a ratio of polynomials of the normalized geodetic latitude, longitude, and height, (P, L, H). Normalized values are used instead of actual values in order to minimize numerical errors in the calculation. The scales and offset of each parameter are selected so that all normalized values fall in the range [-1, 1]. The normalization used is as follows:

```
P = (Latitude - LAT\_OFF) / LAT\_SCALE

L = (Longitude - LONG\_OFF) / LONG\_SCALE

H = (Height - HEIGHT\_OFF) / HEIGHT\_SCALE

r_n = (ROW - LINE\_OFF) / LINE\_SCALE

c_n = (Column - SAMP\_OFF) / SAMP\_SCALE
```

Each polynomial is up to third order in (P, L, H), having as many as 20 terms. The rational functions are

$$r_{n} = \frac{\sum_{i=1}^{20} LINE _NUM _COEF_{i} \bullet p_{i}(P, L, H)}{\sum_{i=1}^{20} LINE _DEN _COEF_{i} \bullet p_{i}(P, L, H)} \quad and \quad c_{n} = \frac{\sum_{i=1}^{20} SAMP _NUM _COEF_{i} \bullet p_{i}(P, L, H)}{\sum_{i=1}^{20} SAMP _DEN _COEF_{i} \bullet p_{i}(P, L, H)}$$

The image coordinates are expressed in pixels. The ground coordinates are latitude and longitude in decimal degrees, and geodetic elevations (height above the ellipsoid) in meters.

	RPC00B Contents			
FIELD	DESCRIPTION	RANGE	CONDITIONS	
satld	Satellite Id.	QB02		
bandld	Identifies the spectral band.	Р		
	"P" = Panchromatic, "Multi" = all Multi-	Multi		
	spectral bands (Blue + Green + Red +	RGB		
	Near-IR), "RGB" = Red + Green + Blue,	NRG		
	"NRG" = Near-IR + Red + Green,	BGRN		
	"BGRN" = Blue + Green + Red + Near-			
	IR. Both RGB and NRG are pan-			
	sharpened color images, stored at the			
	panchromatic spatial resolution.			
SpecId	Identification of the specification which	RPC00B		
	defines the RPC implementation used for			
	generating and/or interpreting the			
	coefficients			
BEGIN_GROUP =				
errBias	Bias error, in meters. 68% non time-	See Note #1		
	varying error estimate for correlated			
	images.			
errRand	Random error, in meters. 68% time-	See Note #1		
	varying error estimate for correlated			
	images.			
lineOffset	LINE_OFFSET, in pixels.	See Note #1		
sampOffset	SAMP_OFFSET, in pixels.	See Note #1		
latOffset	LAT_OFFSET, in degrees.	See Note #1		
longOffset	LONG_OFFSET, in degrees.	See Note #1		
heightOffset	HEIGHT_OFFSET, in meters.	See Note #1		
lineScale	LINE_SCALE	See Note #1		
sampScale	SAMP_SCALE	See Note #1		
latScale	LAT_SCALE	See Note #1		
IongScale	LONG_SCALE	See Note #1		
heightScale	HEIGHT_SCALE	See Note #1		
lineNumCoef	LINE_NUM_COEF. Twenty coefficients	See Note #1		
	for the polynomial in the numerator of the			
	r _n equation.			
IineDenCoef	LINE_DEN_COEF. Twenty coefficients	See Note #1.		
	for the polynomial in the denominator of			
	the r _n equation.			
sampNumCoef	SAMP_NUM_COEF. Twenty coefficients	See Note #1		
	for the polynomial in the numerator of the			
	c _n equation.			
sampDenCoef	SAMP_DEN_COEF. Twenty coefficients	See Note #1		
	for the polynomial in the denominator of			
	the c _n equation.			
END_GROUP = IM	IAGE			
END;		<u> </u>		
			•	

Table 28. ISD RPC00B File.

Note 1: The range of values for each numeric parameter is as specified in The Compendium of Controlled Extensions (CE) for the National Imagery Transmission Format (NITF), NIMA document STDI-0002, Version 2.1, 16 November 2000. Out of range coefficients are set to zero.

10.5.9 Product Component XML File

The XML file contains the same information as the combined product component level README, Licensing, Image Metadata, Tile Map, and RPC00B files, except in XML format. For Basic Imagery Products, the attitude, ephemeris, and geometric calibration file are included as well. One Product Component XML file is provided for each product component of each delivery within the product component subdirectory.

Listed below is an example of this file for a Bundle Standard Imagery Product.

```
<?xml version="1.0" encoding="UTF-8" ?>
- <README>
 <VERSION>AA</VERSION>
 < COPYRIGHT > Use, duplication or disclosure by the government is subject to the restrictions as set forth in
    subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause contained in
    D.F.A.R.S. 252.227-7013, and subparagraphs (c) (1) and (2) of the Commercial Computer Software-
    Restricted Rights contained in 48 C.F.R. 52.227-19. Contractor/manufacturer is DigitalGlobe,
    Incorporated at 1601 Dry Creek Drive, Suite 260, Longmont, CO 80503-6493. Copyright 2006
    DigitalGlobe Incorporated, Longmont CO USA 80503-6493 DigitalGlobe and the DigitalGlobe logo are
    trademarks of DigitalGlobe, Incorporated. The use and/or dissemination of this data and/or of any
    product in any way derived there from are restricted. Unauthorized use and/or dissemination is
    prohibited. DigitalGlobe WWW Reference: http://www.digitalglobe.com</COPYRIGHT>
 <mediacreationdate>2006-01-18T23:03:43.492Z</mediacreationdate>
 <ORDERNO>005366076010_01</ORDERNO>
- <FILELIST>
 <FILE>005366076010_01_README.TXT</FILE>
 <FILE>005366076010_01_README.XML</FILE>
 <FILE>005366076010_01_LAYOUT.JPG</FILE>
 <FILE>GIS_FILES/005366076010_01_ORDER_SHAPE.shx</FILE>
 <FILE>GIS_FILES/005366076010_01_ORDER_SHAPE.shp</FILE>
 <FILE>GIS_FILES/005366076010_01_ORDER_SHAPE.dbf</FILE>
 <FILE>GIS_FILES/005366076010_01_PRODUCT_SHAPE.shx</FILE>
 <FILE>GIS_FILES/005366076010_01_PRODUCT_SHAPE.shp</FILE>
 <FILE>GIS_FILES/005366076010_01_PRODUCT_SHAPE.dbf</FILE>
 <FILE>GIS_FILES/005366076010_01_STRIP_SHAPE.shx</FILE>
 <FILE>GIS_FILES/005366076010_01_STRIP_SHAPE.shp</FILE>
 <FILE>GIS_FILES/005366076010_01_STRIP_SHAPE.dbf</FILE>
 <FILE>GIS_FILES/005366076010_01_TILE_SHAPE.shx</FILE>
 <FILE>GIS_FILES/005366076010_01_TILE_SHAPE.shp</FILE>
 <FILE>GIS_FILES/005366076010_01_TILE_SHAPE.dbf</FILE>
 <FILE>005366076010_01_P001_MUL/02DEC15023811-M1BS-
    005366076010_01_P001_README.TXT</FILE>
 <FILE>005366076010_01_P001_MUL/02DEC15023811-M1BS-005366076010_01_P001.IMD</FILE>
 <FILE>005366076010_01_P001_MUL/02DEC15023811-M1BS-005366076010_01_P001.EPH</FILE>
 <FILE>005366076010_01_P001_MUL/02DEC15023811-M1BS-005366076010_01_P001.ATT</FILE>
 <FILE>005366076010_01_P001_MUL/02DEC15023811-M1BS-005366076010_01_P001.TIL</FILE>
 <FILE>005366076010_01_P001_MUL/02DEC15023811-M1BS-005366076010_01_P001.GEO</FILE>
 <FILE>005366076010_01_P001_MUL/02DEC15023811-M1BS-005366076010_01_P001.RPB</FILE>
 <FILE>005366076010_01_P001_MUL/CIVIL_ORG_EULA_SERVICES.TXT</FILE>
 <FILE>005366076010_01_P001_MUL/02DEC15023811-M1BS-005366076010_01_P001.XML</FILE>
 <FILE>005366076010_01_P001_MUL/02DEC15023811-M1BS-005366076010_01_P001-
    BROWSE.JPG</FILE>
 <FILE>005366076010_01_P001_MUL/02DEC15023811-M1BS-005366076010_01_P001.TIF</FILE>
 <FILE>005366076010_01_P001_PAN/CIVIL_ORG_EULA_SERVICES.TXT</FILE>
 <FILE>005366076010_01_P001_PAN/02DEC15023811-P1BS-
    005366076010_01_P001_README.TXT</FILE>
 <FILE>005366076010_01_P001_PAN/02DEC15023811-P1BS-005366076010_01_P001.IMD</FILE>
 <FILE>005366076010_01_P001_PAN/02DEC15023811-P1BS-005366076010_01_P001.EPH</FILE>
 <FILE>005366076010_01_P001_PAN/02DEC15023811-P1BS-005366076010_01_P001.ATT</FILE>
 <FILE>005366076010_01_P001_PAN/02DEC15023811-P1BS-005366076010_01_P001.TIL</FILE>
 <FILE>005366076010_01_P001_PAN/02DEC15023811-P1BS-005366076010_01_P001.GEO</FILE>
```



```
<FILE>005366076010_01_P001_PAN/02DEC15023811-P1BS-005366076010_01_P001.RPB</FILE>
<FILE>005366076010_01_P001_PAN/02DEC15023811-P1BS-005366076010_01_P001.XML</FILE>
<FILE>005366076010_01_P001_PAN/02DEC15023811-P1BS-005366076010_01_P001-
  BROWSE.JPG</FILE>
<FILE>005366076010_01_P001_PAN/02DEC15023811-P1BS-005366076010_01_P001.TIF</FILE>
<FILE>005366076010_01_P002_MUL/03AUG09021839-M1BS-
  005366076010_01_P002_README.TXT</FILE>
<FILE>005366076010_01_P002_MUL/03AUG09021839-M1BS-005366076010_01_P002.IMD</FILE>
<FILE>005366076010_01_P002_MUL/03AUG09021839-M1BS-005366076010_01_P002.EPH</FILE>
<FILE>005366076010_01_P002_MUL/03AUG09021839-M1BS-005366076010_01_P002.ATT</FILE>
<FILE>005366076010_01_P002_MUL/03AUG09021839-M1BS-005366076010_01_P002.TIL</FILE>
<FILE>005366076010_01_P002_MUL/03AUG09021839-M1BS-005366076010_01_P002.GEO</FILE>
<FILE>005366076010_01_P002_MUL/03AUG09021839-M1BS-005366076010_01_P002.RPB</FILE>
<FILE>005366076010_01_P002_MUL/CIVIL_ORG_EULA_SERVICES.TXT</FILE>
<FILE>005366076010 01 P002 MUL/03AUG09021839-M1BS-005366076010 01 P002.XML</FILE>
<FILE>005366076010_01_P002_MUL/03AUG09021839-M1BS-005366076010_01_P002-
  BROWSE.JPG</FILE>
<FILE>005366076010_01_P002_MUL/03AUG09021839-M1BS-005366076010_01_P002.TIF</FILE>
<FILE>005366076010_01_P002_PAN/CIVIL_ORG_EULA_SERVICES.TXT</FILE>
<FILE>005366076010_01_P002_PAN/03AUG09021839-P1BS-
  005366076010_01_P002_README.TXT</FILE>
<FILE>005366076010_01_P002_PAN/03AUG09021839-P1BS-005366076010_01_P002.IMD</FILE>
<FILE>005366076010_01_P002_PAN/03AUG09021839-P1BS-005366076010_01_P002.EPH</FILE>
<FILE>005366076010_01_P002_PAN/03AUG09021839-P1BS-005366076010_01_P002.ATT</FILE>
<FILE>005366076010_01_P002_PAN/03AUG09021839-P1BS-005366076010_01_P002.TIL</FILE>
<FILE>005366076010_01_P002_PAN/03AUG09021839-P1BS-005366076010_01_P002.GEO</FILE>
<FILE>005366076010_01_P002_PAN/03AUG09021839-P1BS-005366076010_01_P002.RPB</FILE>
<FILE>005366076010_01_P002_PAN/03AUG09021839-P1BS-005366076010_01_P002.XML</FILE>
<FILE>005366076010_01_P002_PAN/03AUG09021839-P1BS-005366076010_01_P002-
  BROWSE.JPG</FILE>
<FILE>005366076010_01_P002_PAN/03AUG09021839-P1BS-005366076010_01_P002.TIF</FILE>
  </FILELIST>
<AREADESCRIPTION>PS_WV_02</AREADESCRIPTION>
<DGORDERNO>005366076</DGORDERNO>
<DGORDERITEMNO>005366076010</DGORDERITEMNO>
<CUSTOMERORDERNO>PS_02 1B+ BA XML Taipei
<CUSTOMERORDERITEMNO>40009</CUSTOMERORDERITEMNO>
<COLLECTIONSTART>2002-12-15T02:38:08.618201Z</COLLECTIONSTART>
<COLLECTIONSTOP>2003-08-09T02:18:48.385340Z</COLLECTIONSTOP>
<COUNTRYCODE>TW</COUNTRYCODE>
<NUMBEROFLOOKS>1</NUMBEROFLOOKS>
<CLOUDCOVER>-999.0</CLOUDCOVER>
<NWLAT>25.12000000</NWLAT>
<NWLONG>121.6000000</NWLONG>
<SELAT>25.0400000</SELAT>
<SELONG>121.73000000</SELONG>
  </README>
```

10.5.10 Manifest File

The manifest file outlines the directory structure for products delivered by FTP. Below is an example of the manifest file delivered for a Standard Pansharpened Imagery product.

```
./005510916010_01.MAN

./005510916010_01

./005510916010_01/005510916010_01_README.TXT

./005510916010_01/005510916010_01_README.XML

./005510916010_01/005510916010_01_LAYOUT.JPG

./005510916010_01/GIS_FILES

./005510916010_01/GIS_FILES/005510916010_01_ORDER_SHAPE.shx

./005510916010_01/GIS_FILES/005510916010_01_ORDER_SHAPE.shp
```



```
./005510916010_01/GIS_FILES/005510916010_01_ORDER_SHAPE.dbf
./005510916010_01/GIS_FILES/005510916010_01_PRODUCT_SHAPE.shx
./005510916010_01/GIS_FILES/005510916010_01_PRODUCT_SHAPE.shp
./005510916010_01/GIS_FILES/005510916010_01_PRODUCT_SHAPE.dbf
./005510916010_01/GIS_FILES/005510916010_01_STRIP_SHAPE.shx
./005510916010_01/GIS_FILES/005510916010_01_STRIP_SHAPE.shp
./005510916010_01/GIS_FILES/005510916010_01_STRIP_SHAPE.dbf
./005510916010_01/GIS_FILES/005510916010_01_TILE_SHAPE.shx
./005510916010_01/GIS_FILES/005510916010_01_TILE_SHAPE.shp
./005510916010_01/GIS_FILES/005510916010_01_TILE_SHAPE.dbf
./005510916010_01/005510916010_01_P001_PSH
./005510916010_01/005510916010_01_P001_PSH/03MAR13174755-S2AS-005510916010_01_P001_README.TXT
./005510916010\_01/005510916010\_01\_P001\_PSH/03MAR13174755-S2AS-005510916010\_01\_P001.\\IMD
./005510916010_01/005510916010_01_P001_PSH/03MAR13174755-S2AS-005510916010_01_P001.TIL
./005510916010_01/005510916010_01_P001_PSH/03MAR13174755-S2AS-005510916010_01_P001.RPB
./005510916010_01/005510916010_01_P001_PSH/COMMERCIAL.TXT
./005510916010_01/005510916010_01_P001_PSH/03MAR13174755-S2AS-005510916010_01_P001.XML
./005510916010_01/005510916010_01_P001_PSH/03MAR13174755-S2AS-005510916010_01_P001-BROWSE.JPG
./005510916010_01/005510916010_01_P001_PSH/03MAR13174755-S2AS_R1C1-005510916010_01_P001.TIF
./005510916010\_01/005510916010\_01\_P001\_PSH/03MAR13174755-S2AS\_R1C2-005510916010\_01\_P001.TIF
./005510916010_01/005510916010_01_P001_PSH/03MAR13174755-S2AS_R1C3-005510916010_01_P001.TIF
./005510916010_01/005510916010_01_P001_PSH/03MAR13174755-S2AS_R2C1-005510916010_01_P001.TIF ./005510916010_01/005510916010_01_P001_PSH/03MAR13174755-S2AS_R2C3-005510916010_01_P001.TIF
./005510916010_01/005510916010_01_P001_PSH/03MAR13174755-S2AS_R3C2-005510916010_01_P001.TIF
./005510916010_01/005510916010_01_P001_PSH/03MAR13174755-S2AS_R4C1-005510916010_01_P001.TIF
./005510916010_01/005510916010_01_P001_PSH/03MAR13174755-S2AS_R4C3-005510916010_01_P001.TIF
./005510916010_01/005510916010_01_P001_PSH/03MAR13174755-S2AS_R4C2-005510916010_01_P001.TIF
./005510916010_01/005510916010_01_P001_PSH/03MAR13174755-S2AS_R3C3-005510916010_01_P001.TIF
./005510916010\_01/005510916010\_01\_P001\_PSH/03MAR13174755-S2AS\_R3C1-005510916010\_01\_P001.TIF
./005510916010 01/005510916010 01 P001 PSH/03MAR13174755-S2AS R2C2-005510916010 01 P001.TIF
```


11. ISD Coordinate Conventions

For geolocation purposes, ISD files for all product levels must reference both image coordinates and earth coordinates. In addition, ISD files for Basic Imagery products contain information about the position and orientation of the spacecraft, camera, and the linear detector arrays on the focal plane. This section describes the coordinate systems that are associated with each of these entities.

11.1 Earth Coordinates (E)

Earth coordinates are expressed relative to an earth-centered fixed (ECF) reference system that rotates with the earth. In particular, all ECF coordinates in ISD files are given in the WGS 84 reference system, including geocentric cartesian coordinates (X_E , Y_E , Z_E) and geodetic coordinates (latitude, longitude). The WGS 84 Z_E -axis points in the direction of the Conventional Terrestrial Pole (CTP); the X_E -axis lies along the intersection of the meridian plane and the CTP equator, pointing outward at Greenwich; the Y_E -axis completes the right-handed orthogonal coordinate system.

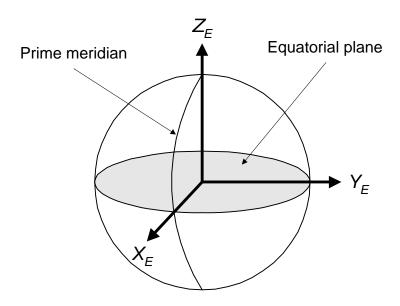


Figure 13. Earth Coordinate System.

All heights are in meters with respect to the WGS 84 ellipsoid. All easting and northing values in any of the ISD files are specified in the projection determined by the datum and map projection fields in the image metadata file.

11.2 Spacecraft Coordinates (S)

The spacecraft coordinate system has its origin near the spacecraft center of mass, and its axes roughly aligned with the camera frame. The Z_S -axis is approximately parallel to the line-of-sight vector and points toward the ground; the X_S -axis points roughly in the along-track imaging direction; the Y_S -axis completes the right-handed orthogonal coordinate system and points toward the across-track direction. To an imaginary viewer riding on the spacecraft and facing forward, the X_S -axis points forward in the direction of the imaging scan, the Y_S -axis points toward the right, and the Z_S -axis points down.

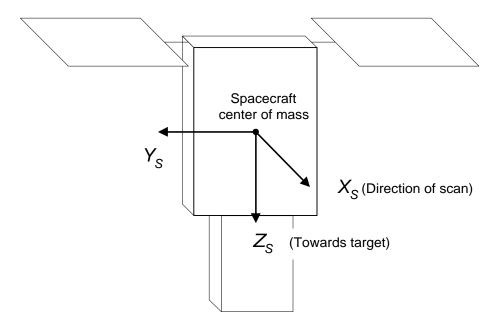


Figure 14. Spacecraft Coordinate System.

11.3 Camera Coordinates (C)

The term "camera" is used here to include the telescope and image detectors. The camera coordinate system is fixed relative to the spacecraft body frame. The origin is the perspective center of the telescope for rays on the object or ground side of the optics. The Z_{C} -axis is parallel to the optic axis of the telescope and points toward the ground; the X_{C} -axis points in the direction of the scan; the Y_{C} -axis completes the right-handed orthogonal coordinate system and is parallel to the long axis of the detector arrays.

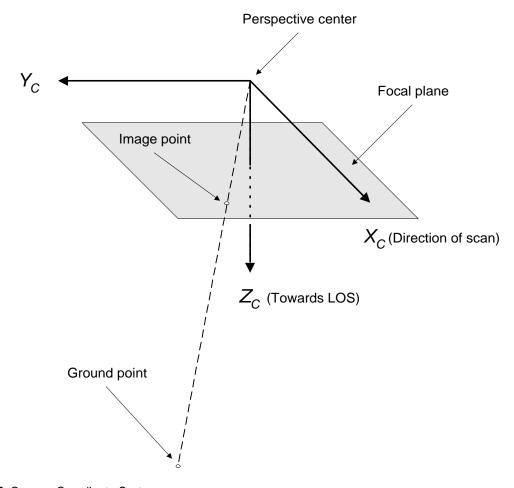


Figure 15. Camera Coordinate System.

11.4 Detector Coordinates (D)

Each photosensitive detector in one of the N-element linear detector arrays on the focal plane has an integer column coordinate, ranging from 0 to N-1. The detector coordinate numbers increase in the direction of decreasing Y_C.

A detector coordinate system can be erected for each of the linear detector arrays. The origin of each such coordinate system is the center of the detector in column 0 of the corresponding detector array. The Z_D -axis of the detector system is parallel to the camera Z_C -axis; the Y_D -axis of the array is parallel to the long axis of the array, pointing approximately in the $+Y_C$ direction; the X_D -axis completes the right-handed orthogonal coordinate system. The X_D -axis is perpendicular to the linear array and points approximately in the direction of the image scan.

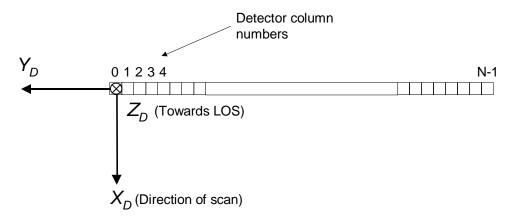


Figure 16. Detector Coordinate System.

11.5 Image Coordinates

An image address is specified as a (column, row) pair. When the image is displayed, column numbers should increase toward the right and row numbers should increase in the downward direction. Address (0, 0) corresponds to the pixel displayed in the upper left corner. Adherence to these display conventions ensures that a displayed image will have the same sense as an aerial view of the ground—differing from an aerial view by a proper rotation.

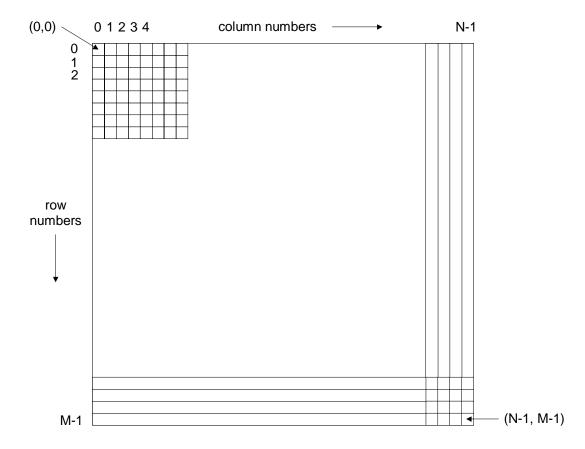


Figure 17. Image Coordinate System.

The detector in column 0 of a detector array produces the pixels in column 0 of the corresponding Basic image. The ground location of a specific pixel in the image is the geolocation of the center of that pixel.

11.6 Time

All absolute times are in UTC in the format YYYY-MM-DDThh:mm:ss.ddddddZ.

Relative time offsets from a fixed absolute time are measured in seconds, unless specified otherwise.

An example of both absolute UTC time and relative time is the time-tagged line count (TLC) data in the image metadata file. The TLC data, which are pairs of line numbers and the associated exposure times, provide a way to accurately estimate the time of exposure of any line in the image. The first such timing event for an image is reported in the image metadata file as an absolute UTC time, but subsequent events are reported as time offsets, in seconds, relative to this initial time.

12. Appendix A - Abbreviations, Acronyms, and Terms

Table 29, Abbreviations and Acronyms, contains a listing of the abbreviations and acronyms and their associated meaning as used in this document.

Abbreviation or Acronym	Meaning/Definition
CE	Circular Error
DEM	Digital Elevation Model
DN	Digital Number
ECF	Earth Centered Fixed
FOR	Field of Regard
ftp	File Transfer Protocol
GCP	Ground Control Point
GPS	Global Positioning System
GSD	Ground Sample Distance
IOC	Initial Operating Capability
ISD	Image Support Data
km	Kilometers
LE	Linear Error
m	Meters
MBR	Minimum Bounding Rectangle
mm	Millimeters
NIIRS	National Image Interpretability Rating Scales
NITF	National Imagery Transmission Format
nm	Nanometers
NRG	Near-Infrared, Red, Green
MS	Multispectral
Pan	Panchromatic
PanMS	Panchromatic and Multispectral
PanSh	Pan-sharpened Natural Color or Color Infrared
PD	Principal Distance
PNIIRS	Predicted National Image Interpretability Rating Scales
PVL	Physical Volume Library
QB	QuickBird
RGB	Red, Green, Blue
RMSE	Root Mean Square Error
RPC	Rational Polynomial Coefficient Rapid Positioning Capability
TDI	Time Delay Integration
TIFF	Tagged Image Format File
TLC	Time-tagged Line Count
итс	Coordinated Unversal Time
WGS	World Geodetic System

Table 29. Abbreviations and Acronyms.

The following section contains a listing of QuickBird Imagery Products terms and associated definitions as used in this document.

<u>Digital Elevation Model</u> – A digital model of terrain relief, usually derived from stereo imagery. A DEM is used to remove terrain distortions from Orthorectified Imagery products.

<u>Digital Number (DN)</u> – Value assigned to a pixel in a digital image. This gray density number represents the intensity of reflected light from a feature collected by the sensor for a particular spectral range.

Digitization Scaling Method – The method used to scale 11-bit data to 8-bit data.

<u>Dynamic Range</u> – The number of possible DN values for each band in an image. QuickBird has an 11-bit dynamic range which translates into 2048 possible DN values.

<u>Field of Regard</u> – The area on the ground visible to the QuickBird satellite. Also known as the sensor footprint.

<u>Ground Control Point (GCP)</u> – A known geographic coordinate location on the ground. Can be collected from ground survey or maps (Primary GCP), or derived via triangulation of primary GCPs (Secondary GCP). GCPs can be planimetric (x, y; latitude, longitude) or vertical (x, y, z; latitude, longitude, elevation).

Ground Sample Distance (GSD) - The size of one pixel, as measured on the ground.

<u>Image Support Data (ISD)</u> – A set of files which contain all the necessary data necessary to use and process QuickBird Imagery Products. These files can be viewed as a collection point for all ancillary data that is expected to be useful to a customer.

<u>Metadata</u> – Ancillary data that describes and defines the imagery product. DigitalGlobe provides metadata in a set of Image Support Data files.

<u>Multispectral</u> – QuickBird imagery with data recorded in 4 discrete spectral bands.

<u>Nadir</u> – The point on the ground which is directly below the QuickBird spacecraft.

<u>Off-nadir Angle</u> – The angle between nadir and the point on the ground that the QuickBird sensor is pointing. Off-nadir angle can be measured in the along-track (forward) direction or across-track (sideways) direction.

Orthorectification – The correction of distortions caused by terrain relief displacement.

<u>Panchromatic</u> – A wide spectral band which is comprised of reflected light in the visible spectrum (blue, green, red and NIR). It is displayed as a black and white image.

<u>Photogrammetry</u> – The art, science, and technology of obtaining reliable information about physical objects and the environment through the process of recording, measuring, and interpreting photographic images and patterns of electromagnetic radiant imagery.

<u>Pixel</u> – Picture Element – smallest element comprising a digital image.

<u>Product Framing</u> – The manner in which QuickBird Imagery Products are delivered. Products are either Scene-based or Area-based.

<u>Radiometric Correction</u> – The correction of variations in data that are not caused by the object or scene being scanned, such as non-responsive detectors, scanner inconsistencies, and atmospheric interference.

Remote Sensing – The measurement or acquisition of data about an object by an instrument not in contact with the object. Satellite imagery, aerial photography, and radar are all types of remote sensing.

Repeat Coverage – The amount of time it takes to image the same spot on the ground.

Resolution – The resampled image pixel size derived from GSD.

<u>Scale</u> – The ratio of distance on a map as related to the true distance on the ground. Products with a larger scale have higher geometric accuracies than products with a smaller scale.

<u>Sensor Correction</u> – The correction of variations in data that are caused by variations in sensor geometry, attitude, and ephemeris.

Spatial Mosaic – The assembly of multiple scenes, each of which shows a portion of the order polygon, into a single image. Usually involves edge matching adjacent scenes.

<u>Sun Azimuth</u> – The azimuth of the sun as seen by an observer sitting on the target measured in a clockwise direction from north.

Sun Elevation – The angle of the sun above the horizon.

<u>Sun-Synchronous</u> – An orbit which rotates around the Earth at the same rate as the Earth rotates on its axis.

<u>Swath Width</u> – The width of an image. The QuickBird satellite has a Swath Width of 16.5 km at nadir

<u>Target Azimuth</u> – The azimuth of the target as seen by an observer sitting on the spacecraft measured in a clockwise direction from north.

<u>Terrain Correction</u> – The correction for variations in data caused by terrain displacement due to off-nadir viewing.