
Constrained Minimization with Lagrange 
Multipliers

We wish to minimize, i.e. to find a local minimum or stationary point of
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Subject to the equality constraint,
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Look at the surface defined by F(x,y) and sketch the contours,



Unconstrained 
minimum

Constrained 
minimum (a,b)



Where the line is the constraint line g(x,y)=0 and (a,b) will be the desired minimum 
point. In 3D, looking from the “north” or +y direction,



The bowl function is the 
objective function, to be 
minimized. The plane 
represents the constraint. 
When we limit or constraint 
the search for the minimum 
only to points that satisfy the 
constraint, by intuition we 
will get the indicated point.

Constrained minimum



The minimum of F(x,y) along g(x,y)=0 at (a,b) is just the point where the constraint line 
is tangent to a level curve or contour line. It is also at the point where the constraint line 
is perpendicular to the direction of the gradient, or the direction of maximum slope. 
The gradient at a point is,
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This gives the direction in which the rate of change of the function value is maximum.
A line in the plane, through (a,b) and parallel to the gradient is,
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A line through (a,b) perpendicular to the gradient, or tangent to the level curve is,
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At the desired minimum point, the line tangent to the level curve must be 
coincident with the constraint line



The constraint line (2) can be rewritten as,
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The lines corresponding to equations (5) and (6) must be coincident, that is they must 
be the same lines.
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Therefore, one equation must be a multiple of the other, or the coefficients must be 
proportional.
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Or,
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If we take the two equations in (9), plus the constraint equation (2) together,
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We now have 3 equations in 3 unknowns, ),,( λba
Which we can solve. We are generally not interested in the explicit value for lambda, it 
is necessary but only an intermediate step. So we solve the equations, keeping the (a,b) 
and throwing away the lambda, the Lagrange Multiplier.



For our numerical example,
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In matrix form,
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Solving,
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Note that equations (1) are analogous to what we get in Least Squares (observations 
only) when we differentiate the augmented objective function,
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v1 and v2 here are playing the role of the (x,y) or (a,b) unknowns in the derivation. Note 
that you can solve simultaneously for the v’s and lambda’s (text uses k). Or you can 
solve for the v’s in terms of the lambda’s, then plug into the condition equations 
(eliminating the v’s leaving only the lambda’s). Then you solve only for the lambda’s, 
and solve again for the v’s from your elimination equations.

Reference: Fulks, Advanced Calculus, p. 264, Lib# 517 F957a Ed. 1


