Space Intersection
|mage coordinates, Camerainterior and
usually considered exterior orientation,
observations (with \/\7 /__ __\ often considered as
uncertainty) < constants, can also be
Z considered as

observations (with
uncertainty)

Unigue Solution:
3 unknowns, 3 equations,
Redundant Solution:

Anything in excess of
those listed at left, i.e. 2
rays, 3 rays, ..., nrays, etc.

For example: 2 equations
fromfirst ray and 1
eguation from second ray,
or 1 ray and aplane (a
ground plane, etc.)

XYZ
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Multi-lmage I ntersection

Well known benefits of
redundancy: (a) increased
precision of results (smaller
sigmas), and (b) enhanced
ability to detect blunders and
Inconsi stencies among
observations.
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What about intersection from a many image sequence, for example
from video frames? Can we drive uncertainty of the ground point to a
negligible quantity? Probably not, if the errors include a non-random
component (i.e. abias) then increased redundancy will reach a point
of diminishing returns, and the bias component will dominate

N/
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Development of the Collinearity Equations
X, U exX- X.u é&u
Ve g=IMEY- Y. =1 v
e fo  €Z-Zg @emy
dividing to remove scae factor,
f) m_Ll(X j XL) +m_Lz(Y j YL) + mls(z j ZL)
”El(x B XL) + msz(Y' YL) + mas(z B ZL)
_ f) mﬂ(x ~ XL) + mzz(Y' YL) + mzs(z ~ ZL)
msl(x - XL) +m32(Y' YL) T m33(Z - ZL)
or, written as condition equations,

/7

MD> D> (D

X, = (-

Y. =(

U
F,=x+f—=0
=% W

\
Yy =0
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Common Stochastic Assumptions for Intersection

(X.,Y.); : refined image observations, image |
(X,Y,Z) :unknown ground point
(X.,Y.,Z, ,w,j k,f):constants

This can be solved as an indirect observation problem, with two equations per image
v+BD=f

é Ylany & Ty
sIX Y 1z EP4H
For prototyping and fast development, use numerical approximationsto partials,

TF F(p+Dp)- F(p)
Tp Dp
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What if we want to consider camera location and attitude as
observations with uncertainty? Revise stochastic assumptions.

(X, Y.,W,j ,k,X_.,Y,,Z,) :observations, imagei
(X,Y,Z):unknown ground point
f : constant

Now it becomes agenera LS problem,

Av+BD =f

Still with two eguations per image.
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Writing out the matrix elements for contribution of one image

2V, U

5 (

&V
efF, 1TF  TF, ﬂl.:X 1= T/ TR TR Ugvg eTlF, TF,  TF, ueru ] ]
e Ty Two o Tk X Y 1Z ey 0, 81X v gz %pya_¢ e Fu

JF, S, I, SF, I, T, I, R gy 0TCTF, TR, R, ¢ u Al
8 Ty, T™w T Tk X, W, 1Z 8y @ﬂx ~ vz g2l
S|

&2 0

The values in the weight matrix will govern how any misclosure, or failure of the
raysto actually intersect, will be distributed among the corrections to each of the
observations. That weight matrix often comes as aresult of a prior bundle block

adjustment.
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If you are lucky, your triangulation program may give you:
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If you are very lucky, your triangulation program may give you:
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HEN
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If you program it yourself then you can get:
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Prior estimation model was nonlinear — How to get initial
approximations? Combine unknowns to produce alinear version
of the equations which is functionally correct but stochastically

éxu  eX- XU
e U_ e u
g g 8Z-Z ¢
exu eX- X
TE u_, € u
& T BZ-Z.4
fuy  EX- X0
e u_, e u
@VL}_I§Y'YLL:J
eVl @Z'ZLH

Incorrect.
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_u_ X-X,
- Z- Z
v _Y-Y
C2
W Z- Z,

Cl(z' ZL):X' XL
C,(Z-Z)=Y-Y,

Clz' X =- XL+ClZL
c,Z-Y=-Y +¢c,2Z,




¢l 0 qua g_¢& X +coZu
e A 1T €
eO -1 CzH? u e- YL+CZZLH

2 “linear” eguations per image

2n “linear” equations for n images

*But, matrix elements (c) are not constants, and

Linear Version of
| ntersection Equations

Elements of right-hand side vector are not observations

*Therefore “Least Squares’ isreally pseudo least squares

*However if datais reasonably good then it works well enough to generate good
Initial approximations. Then nonlinear model with proper stochastic assignment

can be iterated to convergence.

*\We see this strategy on several occasions — use linear model to bootstrap
yoursealf into the nonlinear model without agonizing over approximations (8-

parameter transformation, DLT, etc.)
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