
CE 503 homework assignment 3 – Oblique Image Rectification

•Produce a rectified digital image of the area covered by the given oblique photograph
covering the campus of the University of Illinois and the surrounding towns of Urbana and
Champaign. Include area between E393750m and E 400000m, and N4439250 and N4443000
(UTM zone 16) at a ground sample distance (GSD) of 2m. Produce a .tif file and an ESRI
.tfw world file for use by ArcView. Compose an image map in ArcView with coordinate
grid and legend. Do it in 3 steps:

•Step 1. Compute the 6-parameter transformation parameters to relate the map image
coordinates (the pixel coordinates of the scanned map) and the UTM coordinates. The UTM
grid line intersections provide convenient points to use for this computation. Examine the
residuals from the transformation to confirm that they are consistent with the map scale
(1:24000, ½ mm = 12m). Hand in results from this step on Friday, 19 September.

•Step 2. Select points that are visible and identifiable in both the image and the map and are
distributed over the image area (this will be a challenge – have patience). Measure the map
image coordinates of these and transform via results of step 1 into UTM. Measure the oblique
image coordinates of same points. Assuming a plane surface in the object (it is not) compute
the 8-parameter transformation between the ground coordinates (UTM) and the image
coordinates (pixels). Be sure everything is right handed. Examine the residuals from this
transformation (in image space) to confirm good quality result – I am expecting 10-15 pixels,
this will depend on the level of redundancy. Hand in Results from this step on Wednesday,
24 September.

•Step 3. Modify the given c-language program “rec8m.c” to match your filenames, file sizes,
your transformation parameters, your GSD, your limits, etc., compile under visual studio, and
run. You will need to convert the original .tif into a .raw and the output .raw back into a .tif.
Photoshop does this. Construct an appropriate ESRI .tfw world file for georeferencing the
rectified image. Bring this up in ArcView and confirm that the cursor coordinates are tracking
correctly. Make an Image map in ArcView with coordinate reference, legend, scale, and other
useful annotations. Make it only for A4 or 8.5x11in. size. Hand in these final results on
Wednesday, October 1.

Useful Info:



































=

























+








=









++=
++=

2

1

0

2

1

0

21

21

0

0

210

210

1000
0001

b
b
b
a
a
a

yx
yx

Y
X

y
x

bb
aa

b
a

Y
X

ybxbbY
yaxaaX 6-parameter transformation

Form for application

Form for computation of
the parameters

With the 6-parameter transformation, 3 points will generate 6 equations which will yield a
unique solution (dangerous !). More points (redundancy) will require making a least squares
adjustment of the data.























































≈





























2

1

0

2

1

0

22

32

11

11

2

2

1

1

1000
0001

1000
0001

1000
0001

b
b
b
a
a
a

yx
yx

yx
yx

yx
yx

Y
X

Y
X
Y
X

nn

nn

n

n

MMMMMMM

This is a matrix equation, with LS solution,

Axbv

bAAAx

bAx
Axb

T1T

−=

=

=
=

−

bygiven residuals
)(

system inedoverdeterm solve
,

or ,

Note: Matlab is a great environment for
doing the matrix calculations shown here.

Use Notepad or the Matlab editor to create
a .m file of commands, then from Matlab
command line, call the file to execute it.
Record results with “diary filename” and
“diary off” commands.

Data can be found on read-only share:

\\geomatics\data\bethel\ce503\urbana

Small browse .jpg files are in the main
directory (uiuc_sm.jpg, urbana.jpg) the large
files to make the actual measurements are in
subdirectory “big” (uiuc.tif, urbana.tif)

I will have some CD’s outside 4109 in case
ECN is slow to set up the share access.

Oblique view
looking ~East over
the project area.
Note large scale in
the foreground and
small scale in the
background.
Rectification
should produce a
uniform scale on
output but will the
spatial resolution
be uniform? What
about sampling
and aliasing
effects? And what
happens to relief
displacment with
simple
rectification?

USGS 7.5 minute quadrangle map (1:24000) scanned at 600 dpi. Scanning is approximately
aligned with east-north axes but not exactly – that is what the step 1 6-parameter transformation
will accomplish. Make your actual measurements from the big (175MB) .tif file.

Illustrating the UTM grid
ticks for establishing the
step 1 transformation
parameters.

yYcyXcYbXbby
xYcxXcYaXaax

YbXbbyYcyXcy

YaXaaxYcxXcx

YcXc
YbXbb

y

YcXc
YaXaa

x

21210

21210

21021

21021

21

210

21

210

1

1

−−++=
−−++=

++=++

++=++

++
++

=

++
++

=

Eight Parameter Transformation - Ground XY (plane) to image

Equations for application of the
transformation

Rearrange, multiply by
denominator

make into pseudo-linear equations for
ease of computation





























































−−
−−

−−
−−
−−
−−

=





































































−−
−−

=








2

1

2

1

0

2

1

0

222222

222222

111111

111111

2

2

1

1

2

1

2

1

0

2

1

0

1000
0001

1000
0001

1000
0001

1000
0001

c
c
b
b
b
a
a
a

YyXyYX
YxXxYX

YyXyYX
YxXxYX
YyXyYX
YxXxYX

y
x

y
x
y
x

c
c
b
b
b
a
a
a

yYyXYX
xYxXYX

y
x

nnnnnn

nnnnnn

n

n

MMMMMMMMM

Matrix-vector equation for 1 point

Matrix-vector equation for n
points

Expressed in Matrix-Vector Form

The ground to image transformation should be setup and solved in the order

(x,y) <= (X,Y), X,Y: Ground, x,y: image

As with prior transformation, the matrix form of the equations and the LS solution can be
expressed as,

()
Axbv

bAAAx

bAx
TT

−=
=

=
−1

For CE506 students, note that the residuals here are minus the ones we derive in
Adjustment class. This is the “linear algebra” notation & convention. We must be multi-
lingual. They both work as long as your are consistent within a problem and apply the
corrections with the proper sign!

/* rec8m.c 16-sep-03 */
/* rectify an oblique image using 8-parameter */
/* transformation */
/* modify the numbers in RED and compile, and run */
/* note the supplied .tif file must be converted to .raw */
/* the output .raw must be converted back to .tif */
/*
note the corresponding .tfw world file for arcview should
be an ascii text file (create with notepad) with entries
+GSD
0
0
-GSD
UPPER LEFT X
UPPER LEFT Y
*/

/*
compile and execute under unix by

 cc -o rec8m rec8m.c -lm
 rec8m

compile under windows by

 nmake -f rec8m.mak
 rec8m
 (you may need to run vcvars32.bat first, alternatively
 compile in visual studio)

*/

/*
variable defn for bilinear interp

 i0,j0 i0,j1

(1)	(2)
f	
 t0*-----------------*-----*t1
(4)	(3)

 i1,j0 fracc i1,j1

*/

#include <stdlib.h>

#include <stdio.h>
#include <math.h>

/* setup for purdue engineering mall monochrome image */

#define INROWS 750
#define INCOLS 1035
#define GSD 0.1
#define UPLEFTX 14326.0
#define UPLEFTY 75208.0
#define OUTROWS 1610
#define OUTCOLS 1110

/* transformation from ground to photo */

#define A0 -50.95961490909847
#define A1 1.28220453648728
#define A2 -4.65200062086704
#define B0 6.20993099113558
#define B1 11.27991314142943
#define B2 2.89543630302745
#define C1 -0.00072239030414
#define C2 0.00449064809130

#define RMEAN 3.126250000000000e+02
#define CMEAN 5.092500000000000e+02
#define XMEAN 1.438875000000000e+04
#define YMEAN 7.512375000000000e+04

/* select one of these by =1 */
#define NEAREST_NEIGHBOR 1
#define BILINEAR 0

/* allocate arrays for monochrome images */
unsigned char inpic[INROWS][INCOLS];
unsigned char outpic[OUTROWS][OUTCOLS];

int main(int argc, char *argv[])
{
FILE *inread,*outwrite;
int i,j;
int i0,i1,j0,j1;
double pr,pc,prm,pcm;
int ipr,ipc;
double runx,runy,numx,numy,den;
double fracr,fracc;
unsigned char gra;
double m1,m2,m3,m4;
double t0,t1;
int test;

/* open files - put full pathname if needed */
if ((inread=fopen("emall.raw", "rb")) == NULL)
 {
 printf ("error opening emall.raw");
 exit (1) ;
 }

if ((outwrite=fopen("emallrec.raw", "wb")) == NULL)
 {
 printf ("error opening emallrec.raw");
 exit (1) ;
 }

printf("read data\n");
for(i=0; i<INROWS; i++)
 {
 fread(inpic[i],INCOLS,1,inread);
 }
fclose(inread);

printf("resample the image\n");
for(i=0; i<OUTROWS; i++)
 {
 test= i % 100;
 if(test == 0)
 {
 printf("row number %d\n",i);
 }

 runy=(UPLEFTY-YMEAN) - i*GSD;
 for(j=0; j<OUTCOLS; j++)
 {
 runx=(UPLEFTX-XMEAN) + j*GSD;
 numx=A0 + A1*runx + A2*runy;
 numy=B0 + B1*runx + B2*runy;
 den=1.0 + C1*runx + C2*runy;

 pr=numx/den;
 pc=numy/den;
 /* add the mean back into the row & column */
 prm=pr + RMEAN;
 pcm=pc + CMEAN;

 gra=128;
 if(NEAREST_NEIGHBOR == 1)
 {
 ipr= (int) (prm+0.5) ;
 ipc= (int) (pcm+0.5);
 if((ipr >= 0) && (ipr < INROWS) &&
 (ipc >= 0) && (ipc < INCOLS))
 {
 gra=inpic[ipr][ipc];
 }
 }

 /* bilinear */
 if(BILINEAR == 1)
 {
 i0=(int) prm;
 fracr=prm - (double) i0;
 i1=i0+1;
 j0=(int) pcm;
 fracc=pcm - (double) j0;

 j1=j0+1;
 if((i0 >= 0) && (i1 < INROWS) &&
 (j0 >= 0) && (j1 < INCOLS))
 {
 /* -------------------------- */
 m1=(double) inpic[i0][j0];
 m2=(double) inpic[i0][j1];
 m3=(double) inpic[i1][j1];
 m4=(double) inpic[i1][j0];
 t0=fracr*m4 + (1-fracr)*m1;
 t1=fracr*m3 + (1-fracr)*m2;
 gra=fracc*t1 + (1-fracc)*t0;
 }
 }
 outpic[i][j]=gra;
 }
 }

printf("write data\n");
for(i=0; i<OUTROWS; i++)
 {
 fwrite(outpic[i],OUTCOLS,1,outwrite);
 }
fclose(outwrite);

}

