Ref: Hjelmstad Ch 7
Ready Ch 5
Hughes Section 5.4
Zienkiewicz \& Taylor (Vol-2) Ch 10

- Governing Equations for Solid/Continuum mechanics:

Find $\underline{\varnothing}(\underline{x}) \quad(=\underline{x}+\underline{u}(\underline{X}))$ such that

$$
\begin{array}{rlrl}
\left(\sum \underline{F}=\underline{0}\right) \Rightarrow \operatorname{div} \underset{\sim}{\sigma}+\underline{b} & =\underline{0} & \text { everyone } \\
\left(\sum \underline{M}=\underline{0}\right) \Rightarrow & & \\
B C \Delta: & \underline{\sim} & ={\underset{\sim}{\sigma}}^{\top} & \text { on } \Gamma_{1} \\
\underline{u} & =\underline{u}_{0} & \text { on } \Gamma_{n}
\end{array}
$$

$$
\text { everywhere in " } \Omega \text { " }
$$

strain-displacement:

$$
\underset{\sim}{\epsilon}=\frac{1}{2}(\nabla \underset{\sim}{u}+\nabla \underset{u}{T})
$$

Constitutive:

$$
\begin{aligned}
& \underset{\sim}{\sigma}=\underset{\sim}{\sigma}(\underset{\sim}{\epsilon}) \\
& (\underset{\sim}{\sigma}=\lambda \operatorname{tr}(\underset{\sim}{\epsilon}) \underset{\sim}{\sigma}+2 \mu \underset{\sim}{\epsilon})
\end{aligned}
$$

- Fundamental Kinematic Assumption of Beam Theory:

$$
\begin{aligned}
& u_{1}\left(x_{1}, x_{2}, x_{3}\right)=w_{1}\left(x_{3}\right)-x_{2} \theta_{3}\left(x_{3}\right) \\
& u_{2}\left(x_{1} x_{2} x_{3}\right)=w_{2}\left(x_{3}\right)+x_{1} \theta_{3}\left(x_{3}\right) \\
& u_{3}\left(x_{1} x_{2} x_{3}\right)=w_{3}\left(x_{3}\right)-x_{1} \theta_{2}\left(x_{3}\right)+x_{2} \theta_{1}\left(x_{3}\right)
\end{aligned}
$$

Resultant "section" Forces and Moments

- Equilibrium:
- Internal Section forces (Shear + Axial)

$$
Q(x) \equiv \int_{\Omega} t_{n} d A
$$

- Internal section moment: (Bending + Torsion)

$$
\underline{M}(x) \equiv \int_{\Omega} \underline{p} \times \underline{t}_{n} d A
$$

- Applied Section Forces:

$$
\underline{q}(x) \equiv \int_{\Omega} \underline{b} d \Omega+\int_{\Gamma} \underline{t}_{r} d \Gamma
$$

- Applied section moments:

$$
\underline{m}(x) \equiv \int_{\Omega} \underline{p} \times \underline{b} d \Omega+\int_{\Gamma} \underline{p} \times t_{r} d r
$$

$\sum E=0$ @ every point x along the ream

$$
\Rightarrow \quad \frac{d Q}{d x}+\underline{q}=\underline{0} \quad(0<x<L)
$$

$\Sigma M=0$ (@) every point x along the hear

$$
\Rightarrow \quad \frac{d \underline{M}}{d x}+\left(e_{3} \times \underline{Q}\right)+\underline{m}=\underline{0} \quad(0<x<L)
$$

In the $x_{1}-x_{3}$ plane:
Generalized "Displacements"

$$
\begin{array}{lll}
u(x) & \equiv \omega_{3}\left(x_{3}\right) & \\
\text { Axial } \\
\omega(x) & \equiv \omega_{1}\left(x_{3}\right) & \text { Transverse } \\
\theta(x) & \equiv \theta_{2}\left(x_{3}\right) & \text { Rotation }
\end{array}
$$

Generalized "Forces"

$$
\begin{array}{ll}
N(x) \equiv Q_{3}\left(x_{3}\right) & \text { Axial force } \\
Q(x) \equiv Q_{1}\left(x_{3}\right) & \text { Shear force } \\
M(x) \equiv M_{2}\left(x_{3}\right) & \text { Bending moment }
\end{array}
$$

$n(x)$: Applied axial force per length $q(x)$: Applied transverse load per length $m(x)$: Applied moment per length
Governing Equations of Equilibrium for Beams

$\sum F_{3}=0 \Rightarrow N(x+\Delta x)-N(x)+n(x) \Delta x=0 \Rightarrow \frac{d N}{d x}+n=0$
$\sum F_{1}=0 \Rightarrow Q(x+\Delta x)-Q(x)+q(x) \Delta x=0 \Rightarrow \frac{d Q}{\partial x}+q=0$
$\sum M_{2}=0 \Rightarrow M(x+\Delta x)-M(x)+Q(x+\Delta x) \cdot \Delta x+m(x) \Delta x+(q(x) \Delta x) \frac{\Delta x}{2}=0$

$$
\Rightarrow \frac{d M}{d x}+Q+m=0
$$

ie.

$$
\begin{aligned}
\begin{aligned}
\text { Axial: } \\
\text { Transverse: } \\
\text { ding Moment: }
\end{aligned} & \left.\begin{array}{c}
N^{\prime}+n=0 \\
Q^{\prime}+q=0 \\
M^{\prime}+Q+m=0
\end{array}\right\} \text { for all } x \in(0, L)
\end{aligned}
$$

Using the Kinematic Assumption, we can find :
Strains:
Constitutive Relations

- Axial : $u^{\prime} \quad \cdot N=E A\left(u^{\prime}\right)$
- Shear : $\omega^{\prime}-\theta$
- Curvature : θ^{\prime}

Governing Equations for "Timoshenko" Beam: (including shear)
Axial: $\quad\left(E A u^{\prime}\right)^{\prime}+n=0$
Transverse: $\quad\left(G A\left(\omega^{\prime}-\theta\right)\right)^{\prime}+q=0$
Bending: $\quad\left(E I\left(\theta^{\prime}\right)\right)^{\prime}+G A\left(\omega^{\prime}-\theta\right)+m=0$
Boundany conditions:

$E B C[$ Arcial: $\quad u(0)=0$
Transverse :

$$
\omega(0)=0
$$

NBC [Bending

$$
M(0)=M_{0}
$$

$$
\begin{aligned}
& \left.N(L)=N_{L}\right] N B C \\
& \omega(L)=0] E B C \\
& \left.M(L)=M_{L}\right] N B C
\end{aligned}
$$

Weak Form:

$$
\begin{aligned}
G(\underbrace{\{\underbrace{u, w, \theta}\}}_{\underline{U}}, \underbrace{\{\underbrace{}_{\underline{u}, \bar{w}, \bar{\theta}\}})}_{\underline{\bar{u}}} & \equiv \int_{0}^{L} \bar{u}\left(\left(E A u^{\prime}\right)^{\prime}+n\right) d l \\
& +\int_{0}^{L} \bar{\omega}\left(\left[G A\left(\omega^{\prime}-\theta\right)\right]^{\prime}+q\right) d l \\
& +\int_{0}^{L} \bar{\theta}\left(\left(E I \theta^{\prime}\right)^{\prime}+G A\left(\omega^{\prime}-\theta\right)+m\right) d l
\end{aligned}
$$

Integrating by parts:-

$$
\begin{aligned}
G(\underline{v}, \underline{v}) & =-\left[\int_{0}^{L}\left(\bar{u}^{\prime} E A u^{\prime}-\bar{\omega} n\right) d l\right]+\left[\bar{u}\left(E A u^{\prime}\right)\right]_{0}^{L} \\
& -\left[\int_{0}^{L}\left(\bar{\omega}^{\prime} G A\left(\omega^{\prime}-\theta\right)-\bar{\omega} q\right) d l\right]+\left[\bar{\omega}\left(G A\left(\omega^{\prime}-\theta\right)\right)\right]_{0}^{L} \\
& =\left[\int_{0}^{L}\left(\bar{\theta}^{\prime} E\left[\theta^{\prime}-\bar{\theta} G A\left(\omega^{\prime}-\theta\right)-\bar{\theta} m\right) d l\right]+\left[\bar{\theta}\left(E I \theta^{\prime}\right)\right]_{0}^{L}\right.
\end{aligned}
$$

Rearranging

$$
\begin{aligned}
G(\underline{U}, \underline{U})= & -\int_{0}^{L}\left[\bar{u}^{\prime} E A u^{\prime}+\left(\bar{\omega}^{\prime}-\bar{\theta}\right) G A\left(\omega^{\prime}-\theta\right)+\bar{\theta}^{\prime} E\left[\theta^{\prime}\right] d l\right. \\
& +\int_{0}^{L}[\bar{u} n+\bar{\omega} q+\bar{\theta} m] d l+[\bar{u} N]_{0}^{L}+[\bar{\omega} Q]_{0}^{L}+[\bar{\theta} M]_{0}^{L}
\end{aligned}
$$

Requirements for contimity:
To solve $G(\underline{U}, \underline{\bar{u}})=0$ for all $\underline{\bar{u}}=\{\bar{u}, \bar{\omega}, \bar{\theta}\} \in H_{0}^{1}(0, L)$
This means that we can choose our previous 1-D functions for $\{\bar{u}, \bar{\omega}, \bar{\theta}\}$ and the same frameurork will apply here.

For the Ritz method:

$$
\left.\begin{array}{l}
u(x) \approx u^{h}(x)=c_{0}+\sum c_{i} f_{i}(x) \\
\omega(x) \approx \omega^{h}(x)=a_{0}+\sum a_{i} h_{i}(x) \\
\theta(x) \approx \theta^{h}(x)=b_{0}+\sum b_{i} g_{i}(x)
\end{array}\right\} \begin{aligned}
& \text { where } \\
& f_{i}, g_{i}, h_{i} \in H_{0}^{1}(0, L)
\end{aligned}
$$

Example: Cantilever Bean:

$$
u(0)=\omega(0)=\theta_{0}(0)=0 \quad N(L)=Q(L)=M(L)=0
$$

Assume Polynomial approximation: (axial approximation eliminated)

$$
\begin{aligned}
& w(x)=a_{1} x+a_{2} \frac{x^{2}}{\ell}, \quad \theta(x)=b_{1} \frac{x}{\ell} \\
& \bar{w}(x)=\bar{a}_{1} x+\bar{a}_{2} \frac{x^{2}}{\ell}, \quad \theta(x)=\bar{b}_{1} \frac{x}{\ell}
\end{aligned}
$$

Weak form:

Solving the equations:

$$
a_{1}=-\frac{q \ell}{G A}, \quad a_{2}=\frac{q \ell}{G A}\left(\frac{\beta-2}{2 \beta}\right), \quad b_{1}=-\frac{q \ell}{G A}\left(\frac{2}{\beta}\right) \quad \text { where } \beta=\frac{12}{l^{2}} \frac{E L}{G A}
$$

Thus:

$$
w(x)=\frac{q \ell^{4}}{24 E I}\left((\beta-2) \frac{x^{2}}{\ell^{2}}-2 \beta \frac{x}{\ell}\right), \quad \theta(x)=-\frac{q \ell^{3}}{6 E I}\left(\frac{x}{\ell}\right)
$$

Note: We have used Quadratic Polynomial for $\operatorname{co}(x)$ and a Linear Polynomial for $\theta(x)$
In general, we choose approximation of $\omega(x)$ one degree higher than $\theta(x)$.

Governing Equations for a Bernoulli-Euler Bean: (neglecting shear)
If we further assume that the shear deformation is zero:

$$
\omega^{\prime}-\theta=0 \Rightarrow \omega^{\prime}=\theta
$$

(i.e. the beam is rigid in shear),

Then equilibrium:-

$$
\text { Axial: }\left(E A u^{\prime}\right)^{\prime}+n=0
$$

Transverse \& Bending: $\left(E I \omega^{\prime \prime}\right)^{\prime}+Q+m=0$
i.e. $\left(E I \omega^{\prime \prime}\right)^{\prime \prime}=q-m^{\prime}$
(Differentiate again)
Note:

- We have eliminated another unknown: $\theta(x)=\omega^{\prime}(x)$
- We also lost the constitutive equation $Q=G A\left(\omega^{\prime}-\theta\right)$. shear must now he calculated from "Statics" (equilibrinin):

$$
Q=-M^{\prime}-m=-\left(E I \omega^{\prime \prime}\right)^{\prime}-m
$$

Boundany conditions:

$E B C\left[\begin{array}{rl}\text { Axial : } u(0)=0 & N(L)=\left(E A u^{\prime}\right)=\text { specified } \\ \text { Transverse : } \omega(0)=0 & Q(L)=-\left(E I \omega^{\prime \prime}\right)^{\prime}-m= \\ \text { Bending: } \omega^{\prime}(0)=0 & M(L)=E I \theta^{\prime}=E I \omega^{\prime \prime}=\end{array}\right] N B C$

$E B C\left[\begin{array}{c}\text { Arcial : } \\ \text { Transverse : }\end{array} \quad \omega(0)=0\right.$
NBC [Bending: EI $\omega^{\prime \prime}(0)=$ specified
$N(L)=$ spec $\quad] N B C$ $\omega(L)=0 \quad \exists E B C$ $E\left[\omega^{\prime \prime}(L)=s p e c\right] N B C$

Weak form:

$$
\begin{aligned}
G(\{u, \omega\},\{\bar{u}, \bar{\omega}\}) & \equiv \int_{0}^{L} \bar{u}\left(\left(E A w^{\prime}\right)^{\prime}+n\right) d l \\
& +\int_{0}^{L} \bar{\omega}\left(\left(E I \omega^{\prime \prime}\right)^{\prime \prime}-q+m^{\prime}\right) d l
\end{aligned}
$$

Weak Form for Bernoulli-Euler beams: (Bending Only)

$$
G(\omega, \bar{\omega}) \equiv \int_{0}^{L} \bar{\omega}\left(\left(E I \omega^{\prime \prime}\right)^{\prime \prime}-q+m^{\prime}\right) d l
$$

Integrate by parts: (thrice)

$$
\begin{aligned}
& G(\omega, \bar{\omega})=-\int_{0}^{L}\left[\bar{\omega}^{\prime}\left(E I \omega^{\prime \prime}\right)^{\prime}+\bar{\omega}\left(q-m^{\prime}\right)\right] d l+\left[\bar{\omega}\left(E I \omega^{\prime \prime}\right)^{\prime}\right]_{0}^{L} \\
& G(\omega, \bar{\omega})=\int_{0}^{L}\left[\bar{\omega}^{\prime \prime}\left(E I \omega^{\prime \prime}\right)-\bar{\omega}\left(q-m^{\prime}\right)\right] d l+\left[\bar{\omega}\left(E I \omega^{\prime \prime}\right)^{\prime}\right]_{0}^{L}-\left[\bar{\omega}^{\prime}\left(E I \omega^{\prime \prime}\right)\right]_{0}^{L}
\end{aligned}
$$

Note: Continuity requirements:

$$
G(\omega, \bar{\omega})=0 \quad \forall \quad \bar{\omega} \in H_{0}^{2}(0, L)
$$

- The chosen functions must also be complete atleast upto polynomial order 2 (because derivatives of order $2: \omega^{\prime \prime}$)
- Conventional 1-D functions-not ok.

Ritz Method

$$
\omega(x) \approx \omega^{w}(x)=a_{0}+\sum_{i=1}^{n} a_{i} h_{i}(x) \quad h_{i}(x) \in H_{0}^{2}(0, L)
$$

Example Cantilever Beam:

$$
\begin{align*}
& a_{0}=0 \text {; } \\
& B C \text { : } \\
& h_{1}(x)=x^{2} \\
& \omega(x)=a_{1} x^{2} \quad \Rightarrow \quad \omega^{\prime \prime}(x)=2 a_{1} \\
& \bar{\omega}(x)=\bar{a}_{1} x^{2} \quad \bar{\omega}^{\prime \prime}(x)=2 \bar{a}_{1} \\
& G(\omega, \bar{\omega})=\int_{0}^{2} \bar{a}_{1}\left(E[\times 2 \times 2) a_{1} d l-\int_{0}^{L} \bar{a}_{1} x^{2} q_{0} d l\right. \\
& G(\omega, \bar{\omega})=\bar{a}_{1}(\underbrace{\left[L^{E I L}\right]}_{K} \underbrace{\left\{a_{1}\right\}}_{d}-\underbrace{\left\{\frac{L^{3}}{3} q_{0}\right\}}_{f})=0 \tag{a}\\
& \Rightarrow a_{1}=\frac{q_{0} L^{2}}{12 E I} \Rightarrow \omega(x)=a_{1} x^{2}=\frac{q_{0} L^{2} x^{2}}{12 E I}
\end{align*}
$$

Exact Solution: $\quad\left(E I \omega^{\prime \prime}\right)^{\prime \prime}=q_{0}$
Integrate: $\Rightarrow\left(E I \omega^{\prime \prime}\right)^{\prime}=q_{0} x+c_{1}$

$$
B C: Q(L)=0 \Rightarrow-\left(E I \omega^{\prime \prime}\right)^{\prime}=-\left(q_{0} L+C_{1}\right)=0 \Rightarrow G_{1}=-q_{0} L
$$

Integrate $\Rightarrow\left(E I \omega^{\prime \prime}\right)=q_{0} \frac{x^{2}}{2}-q_{0} L x+c_{2}$

$$
B C: M(L)=0 \Rightarrow\left(E I \omega^{\prime \prime}\right)=\frac{q_{0} L^{2}}{2}-q_{0} L^{2}+c_{2}=0 \Rightarrow C_{2}=\frac{q_{0} L^{2}}{2}
$$

Integrate $\Rightarrow E\left[\omega^{\prime}=\frac{q_{0} x^{3}}{6}-\frac{q_{0} L x^{2}}{2}+\frac{q_{0} L^{2}}{2} x+c_{3}\right.$

$$
B C \quad \omega^{\prime}(0)=0 \quad \Rightarrow \quad c_{3}=0
$$

Integrate $\Rightarrow \omega(x)=\frac{1}{E I}\left(\frac{q_{0} x^{4}}{24}-\frac{q_{0} L x^{3}}{6}+\frac{q_{0} L^{2}}{4} x^{2}+c_{4}\right)$

$$
B C \quad \omega(0)=0 \quad \Rightarrow \quad C_{4}=0
$$

Thus $\quad \omega(x)=\frac{1}{E I}\left(\frac{q_{0} x^{4}}{24}-\frac{q_{0} L x^{3}}{6}+\frac{q_{0} L^{2} x^{2}}{4}\right)$
Comparing the Ritz solution @ $x=L$:

$$
\text { Ritz : } \frac{q_{0} L^{4}}{12 E I} ; \quad \text { Exact }: \frac{q_{0} L^{4}}{8 E I}
$$

Variational Principles for Bears

$$
\begin{aligned}
& \pi(\underline{U}) \stackrel{(T \pi(u) \cdot \bar{u}}{\sim} G(\underline{U}, \underline{U}) \stackrel{M W R}{ }\left[\begin{array}{c}
N^{\prime}+n=0 \\
Q^{\prime}+q=0 \\
M^{\prime}+Q+m=0
\end{array}\right] \\
& \text { oshenko (shear) bear n: }
\end{aligned}
$$

(i) Timoshenko (shear) beam:

$$
\begin{aligned}
\pi(\underbrace{\{u, \omega, \theta\}}_{\underline{u}})=\int_{0}^{L} & {\left[\frac{1}{2} E A\left(u^{\prime}\right)^{2}+\frac{1}{2} G A\left(\omega^{\prime}-\theta\right)^{2}+\frac{1}{2} E\left[\left(\theta^{\prime}\right)^{2}\right] d l\right.} \\
& -\int_{0}^{L}[u \cdot n+\omega \cdot q+\theta \cdot m] d l \\
& -[u N]_{0}^{L}-[\omega Q]_{0}^{L}-[\theta M]_{0}^{L}
\end{aligned}
$$

Check Minimizing $\Pi(\underline{U})$:

$$
\begin{aligned}
D \pi(\underline{U}) \cdot \underline{\bar{U}}= & {\left.\left[\frac{d}{d \epsilon} \pi(\underline{u}+\epsilon \underline{\bar{u}})\right]\right|_{\epsilon=0} } \\
= & \int_{0}^{L}\left[E A\left(\bar{u}^{\prime} u^{\prime}+\epsilon \bar{u}^{\prime^{2}}\right)+G A\left[\left(\bar{\omega}^{\prime}-\bar{\theta}\right)\left(\omega^{\prime}-\theta\right)+\epsilon\left(\bar{\omega}^{\prime}-\bar{\theta}\right)^{2}\right]\right. \\
& \left.+E I\left(\bar{\theta}^{\prime} \theta^{\prime}+\epsilon \bar{\theta}^{\prime 2}\right)\right] d l-\int_{0}^{L}[\bar{u} \cdot n+\bar{\omega} \cdot \underline{q}+\bar{\theta} \cdot m] d l \\
\text { Thus } & -[\bar{u} N]_{0}^{L}-[\bar{\omega} Q]_{0}^{L}-[\bar{\theta} M]_{0}^{L} \\
D \pi(\underline{U}) \cdot \underline{\bar{u}}= & G(\underline{u}, \underline{\bar{v}})
\end{aligned}
$$

(ii) Bermoulli-Euler Beam: (Bending only)

$$
\pi(\omega)=\int_{0}^{L} \frac{1}{2} E I\left(\omega^{\prime \prime}\right)^{2} d x+\int_{0}^{L}\left(\omega q-\omega m^{\prime}\right) d l-[\omega Q]_{0}^{L}-\left[\omega^{\prime} M\right]_{0}^{L}
$$

Check Minimizing:

$$
\begin{aligned}
D \pi(\omega) \cdot \bar{\omega} & =\left[\left.\frac{d}{d \epsilon} \pi(\omega+\epsilon \bar{\omega})\right|_{\epsilon=0}\right. \\
& =\int_{0}^{L} E I \bar{\omega}^{\prime \prime} \omega^{\prime \prime} d x+\int_{0}^{L}\left(\bar{\omega} q-\bar{\omega} m^{\prime}\right) d x-[\bar{\omega} Q]_{0}^{L}-[\bar{\omega} M]_{0}^{1} \\
& =G(\omega, \bar{\omega})
\end{aligned}
$$

Finite Element Approximations for Beams
(i) Timoshenko Bears (with shear)
weak form:

$$
\begin{aligned}
G(\underline{U}, \underline{U})= & -\int_{0}^{L}\left[\bar{u}^{\prime} E A u^{\prime}+\left(\bar{\omega}^{\prime}-\bar{\theta}\right) G A\left(\omega^{\prime}-\theta\right)+\bar{\theta}^{\prime} E\left[\theta^{\prime}\right] d l\right. \\
& +\int_{0}^{L}[\bar{u} n+\bar{\omega} q+\bar{\theta} m] d l+[\bar{u} N]_{0}^{2}+[\bar{\omega} Q]_{0}^{L}+[\bar{\theta} M]_{0}^{L}
\end{aligned}
$$

Highest degree of derivatives $=1$
$\Rightarrow\{\bar{u}, \bar{\omega}, \bar{\theta}\}$ must he in $H_{0}^{1}(0, l)$
Thus we can use our 1-D finite elements for Timoshenko bearns:
Example: Simply supported beam:
Ritz Approximation:

$$
\left.\begin{array}{l}
u(x) \approx u^{h}(x)=c_{0}+\sum c_{i} f_{i}(x) \\
\omega(x) \approx \omega^{h}(x)=a_{0}+\sum a_{i} h_{i}(x) \\
\theta(x) \approx \theta^{h}(x)=b_{0}+\sum b_{i} g_{i}(x)
\end{array}\right\} \begin{aligned}
& \text { where } \\
& f_{i}, g_{i}, h_{i} \in H_{0}^{1}(0,1)
\end{aligned}
$$

Equivalent Finite element approximation: for element (e):

$$
\begin{aligned}
& u(x)=\left[\begin{array}{ll}
N_{1} & N_{2}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\} \\
& \omega(x)=\left[\begin{array}{ll}
N_{1} & N_{2}
\end{array}\right]\left\{\begin{array}{l}
\omega_{1} \\
\omega_{2}
\end{array}\right\} \\
& \theta(x)=\left[\begin{array}{ll}
N_{1} & N_{2}
\end{array}\right]\left\{\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right\}
\end{aligned}
$$

(e)

Element
degrees of freedom

$$
\underline{d}^{e} \equiv\left\{\underline{u_{1}} u_{2} w_{1} w_{2} \quad \theta_{1} \theta_{2}\right\}
$$

Substituting these expressions into the weak form:

$$
\begin{aligned}
\tilde{G}^{h}(\underline{d}, \underline{d}) & =\underline{d}^{a^{T}}\left[{\underset{\sim}{k}}^{G} \underline{d}^{G}-\underline{f}^{G}\right]=0 \quad \text { for all } \underline{d}^{G} \\
{\left[\begin{array}{c}
k^{G}
\end{array}\right] } & ={\underset{A}{e=1}}_{M}^{M}\left[{\underset{\sim}{k}}_{\sim}^{e l}\right] \quad ; \underline{f}^{G}={\underset{e}{e=1}}_{M}^{f^{e l}}
\end{aligned}
$$

Note:

$$
\left[\begin{array}{c}
K^{e l} \\
6 \times 6
\end{array}\right]=\left[\begin{array}{c|c|c}
K_{u n} & 0 & 0 \\
\hline 0 & K_{\omega \omega} & K_{\omega \theta} \\
\hline 0 & K_{\theta \omega} & K_{\theta \theta}
\end{array}\right]
$$

where

$$
\begin{aligned}
& K_{u n}=\int_{x_{1}^{e}}^{x_{2}^{e}}\left[\begin{array}{l}
N_{1}^{\prime} \\
N_{2}^{\prime}
\end{array}\right] E A\left[\begin{array}{ll}
N_{1}^{\prime} & N_{2}^{\prime}
\end{array}\right] d x \Rightarrow K_{m u}=\frac{E A}{l_{e}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \\
& K_{\omega \omega}=\int_{x_{1}^{e}}^{x_{2}^{e}}\left[\begin{array}{l}
N_{1}^{\prime} \\
N_{2}^{\prime}
\end{array}\right] G A\left[\begin{array}{ll}
N_{1}^{\prime} & N_{2}^{\prime}
\end{array}\right] d x \Rightarrow K_{\omega \omega}=\frac{G A}{l e}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \\
& K_{\omega \theta}=K_{\theta \omega}^{\top}=\int_{x_{1}^{e}}^{x_{1}^{e}}\left[\begin{array}{l}
N_{1}^{\prime} \\
N_{2}^{\prime}
\end{array}\right] G A\left[\begin{array}{ll}
N_{1} & N_{2}
\end{array}\right] d x=\left[\begin{array}{cc}
* & * \\
* & *
\end{array}\right] \\
& K_{\theta \theta}=\int_{x_{1}^{e}}^{x_{2}^{e}}\left[\begin{array}{l}
N_{1} \\
N_{2}
\end{array}\right] G A\left[\begin{array}{ll}
N_{1} & N_{2}
\end{array}\right] d x+\int_{x_{1}^{e}}^{x_{2}^{e}}\left[\begin{array}{l}
N_{1}^{\prime} \\
N_{2}^{\prime}
\end{array}\right] E I\left[\begin{array}{ll}
N_{1}^{\prime} & N_{2}^{\prime}
\end{array}\right] d x=\left[\begin{array}{ll}
* & * \\
* & *
\end{array}\right]
\end{aligned}
$$

Element force vector:

$$
\underline{f}^{e l}=\int_{x_{1}^{e}}^{x_{2}^{e}}\left[\begin{array}{l|l|l}
N_{1} & & \\
N_{2} & & \\
\hline & N_{1} & \\
& N_{2} & \\
\hline & & N_{1} \\
m
\end{array}\right\}\left[\begin{array}{c}
n \\
q \\
\end{array}\right\} d x+[\bar{u} N]_{0}^{2}+[\bar{\omega} Q]_{0}^{L}+[\bar{\theta} M]_{0}^{L}
$$

Higher Order Lagrange shape functions can also he used

$$
\underset{\sim}{N}=\left[\begin{array}{lll}
N_{1} & N_{2} & N_{3}
\end{array}\right]
$$

Shear Locking in Timoshenko beams
Just like the Ritz method by Timoshenko beams, equal order interpolation for $\omega(x)$ and $\theta(x)$ leads to shear locking.
To remedy shear locking:
(i) Reduced Integration
\rightarrow Choose equal order interpolation for $\omega(x)$ and $\theta(x)$ and use "reduced" Gauss Points to integrate:

$$
\int_{0}^{\ell}\left(\bar{\omega}^{\prime}-\bar{\theta}\right) G A\left(\omega^{\prime}-\theta\right) d x \quad \text { (shear term) }
$$

\rightarrow For example

- $\omega(x)$: linear $\Rightarrow \omega^{\prime}$: constant
$\theta(x)$: linear

\Rightarrow Use 1 gauss point
- $\omega(x)$: quadratic
$\Rightarrow \omega^{\prime}$: linear
$\theta(x)$: quadratic
\Rightarrow Use 2 gauss points
(ii) Consistent interpolation
\rightarrow Choose shape functions such that polynomial order of $\omega^{\prime}(x)$ and $\theta(x)$ is the same.
\rightarrow for example

$$
u(x) \text { : linear }
$$

$\omega(x)$: quadratic

$\theta(x)$: linear

element dofs:

$$
\left[K^{e l}\right]_{7 \times 7}=\left[\begin{array}{l|l|l}
K_{\omega \omega} & & \\
\hline & K_{\omega \omega} & K_{\omega \theta} \\
\hline & K_{\theta \omega} & K_{\theta \theta}
\end{array}\right]
$$

$$
\begin{aligned}
& \underline{d}=\left\{\underline{u_{1} u_{2}} \frac{\omega_{1} \omega_{c} \omega_{2}}{\left.\theta_{1} \theta_{2}\right\}}\right. \\
& {[K u u]_{2 \times 2}} \\
& {[K \omega \omega]_{3 \times 3} \quad[K \omega \theta]_{3 \times 2}} \\
& {[K \theta \omega]_{2 \times 3} \quad\left[K_{\Delta \theta}\right]_{2 \times 2}}
\end{aligned}
$$

(ii) Bernoulli-Euler Beams:

Recall weak form:

$$
G(\omega, \bar{\omega})=\int_{0}^{L}\left[\bar{\omega}^{\prime \prime}\left(E I \omega^{\prime \prime}\right)-\bar{\omega}\left(q-m^{\prime}\right)\right] d l+\left[\bar{\omega}\left(E I \omega^{\prime \prime}\right)^{\prime}\right]_{0}^{L}-\left[\bar{\omega}^{\prime}\left(E I \omega^{\prime \prime}\right)\right]_{0}^{L}
$$

Consider a cantilever beam:

Weak form $G(\omega, \bar{\omega})=0 \quad \forall \bar{\omega}$
Finite element:

One Element:

(C)

$$
\begin{aligned}
\omega(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \\
\theta(x)=\omega^{\prime}(x) & =a_{1}+2 a_{2} x+3 a_{3} x^{2}
\end{aligned}
$$

such that:

1-D analogous problem

$$
\begin{aligned}
& \vec{\Delta}=\stackrel{\rightharpoonup}{b(x)} \\
& \left(u^{\prime}\right)^{\prime}+b=0 \\
& G(u, \bar{u})=0 \quad \forall \bar{u}
\end{aligned}
$$

$$
u(x)=a_{0}+a_{1} x
$$

such that

$$
\begin{aligned}
& w_{1}=u\left(x_{1}^{e}\right)=a_{0}+a_{1} x_{1}^{e} \\
& u_{2}=u\left(x_{2}^{e}\right)=a_{0}+a_{1} x_{2}^{e} \\
& \Rightarrow\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}=\left[\begin{array}{ll}
1 & x_{1}^{e} \\
1 & x_{2}^{e}
\end{array}\right]\left\{\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus } \\
& \left\{\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\}=\left[\begin{array}{cccc}
1 & x_{1}^{e} & x_{1}^{e^{2}} & x^{e^{3}} \\
0 & 1 & 2 x_{1}^{e} & 3 x_{e^{e^{2}}}^{1} \\
1 & x_{2}^{e} & x_{2}^{e^{2}} & x^{e^{3}} \\
0 & 1 & 2 x_{2}^{e} & 3 x_{2}^{e^{e}}
\end{array}\right]^{-1}\left\{\begin{array}{c}
w_{1} \\
\theta_{1} \\
\omega_{2} \\
\theta_{2}
\end{array}\right\}
\end{aligned}
$$

$$
\Rightarrow \omega(x)=\left[\begin{array}{llll}
N_{1} & N_{2} & N_{3} & N_{4}
\end{array}\right]\left\{\begin{array}{c}
\omega_{1} \\
\theta_{1} \\
\omega_{2} \\
\theta_{2}
\end{array}\right\}
$$

$$
\begin{aligned}
& N_{1}^{h}(x)=1-\frac{3 x^{2}}{L^{2}}+\frac{2 x^{3}}{L^{3}} \\
& N_{2}^{h}(x)=x-\frac{2 x^{2}}{L}+\frac{x^{3}}{L^{2}} \\
& N_{3}^{h}(x)=3 \frac{x^{2}}{L^{2}}-\frac{2 x^{3}}{L^{3}}
\end{aligned} N_{4}^{h}(x)=-\frac{x^{2}}{L}+\frac{x^{3}}{L^{2}}
$$

$$
\Rightarrow\left\{\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right\}=\left[\begin{array}{ll}
1 & x_{1}^{e} \\
1 & x_{2}^{e}
\end{array}\right]^{-1}\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}
$$

Substitute $\left\{a_{0} a_{1}\right\}$ into $u(x)=a_{0}+a_{1} x$

$$
\Rightarrow u(x)=\left[\begin{array}{ll}
N_{1} & N_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

ie. $\quad \underline{u}=\underset{\sim}{N} \underline{d}$

$$
\begin{aligned}
& N_{1}(x)=1-\frac{x}{L} \\
& N_{2}(x)=\frac{x}{L}
\end{aligned}
$$

These are called Hermite functions. They impose the contimity of the primary vanialule $\omega(x)$ and its derivative $\left(\omega^{\prime}(x)=\theta(x)\right)$.

Substituting this Finite Element approximation into the weak form: (including axial)

$$
\begin{aligned}
& G(\{u, \omega\},\{\bar{u}, \bar{\omega}\})=\sum_{e=1}^{M}\left[\int _ { x _ { 1 } ^ { e } } ^ { x _ { 2 } ^ { e } } \left[\left(\bar{u}^{\prime} E A u^{\prime}\right)+\left(\bar{\omega}^{\prime \prime} E\left[\omega^{\prime \prime}\right)\right] d x-\int_{x_{T}^{e}}^{x_{2}^{e}}\left(\bar{u} n+\bar{\omega}\left(q-m^{\prime}\right)\right) d x\right.\right. \\
& u(x)=\left[\begin{array}{ll}
N_{1} & N_{2}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\} \\
& \left.-[\bar{u} N]_{0}^{L}-[\bar{\omega} Q]_{0}^{L}-\left[\bar{\omega}^{\prime} M\right]_{0}^{L}\right] \\
& \omega(x)=\left[\begin{array}{lll}
N_{1}^{h} & N_{2}^{h} & N_{3}^{h} \\
N_{4}^{h}
\end{array}\right]\left\{\begin{array}{c}
\omega_{1} \\
\theta_{1} \\
\omega_{2} \\
\theta_{2}
\end{array}\right\} \quad \text { Element Docs: }\left\{\underline{u_{1} u_{2}} \omega_{1} \theta_{1} \omega_{2} \theta_{2}\right\} \\
& \widetilde{G}^{h}(\underline{d}, \underline{d})=-{\underset{A}{e}}^{M} \underline{d}^{G}\left({\underset{\sim}{k}}^{G} \underline{d}^{G}-\underline{f}^{G}\right)=0 \quad \forall \underline{d} \\
& \text { unere } \\
& K^{q}=\quad \underset{\sim}{k} ; \quad \underline{f}^{G}={\underset{e}{e-1}}_{M}^{f^{e l}} \\
& \text { (e) } \\
& \begin{array}{l}
3 \text { Docs } \\
\text { per node }
\end{array}
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \underset{\sim}{K^{d}}=\left[\begin{array}{l|l}
K_{u n} & \\
\hline & K_{w w}
\end{array}\right] \\
& \underset{\sim}{K_{u u}^{e l}}=\int_{x_{1}^{e}}^{x_{2}^{e}}\left[\begin{array}{l}
N_{1}^{\prime} \\
N_{2}^{\prime}
\end{array}\right] \operatorname{EA}\left[N_{1}^{\prime} N_{2}^{\prime}\right] d x=\frac{E A}{l}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \\
& l=\left|x_{2}^{e}-x_{1}^{e}\right|
\end{aligned}
$$

Element force vector:

Post processing: After solving $\quad{\underset{\sim}{a}}^{G} \underline{d}^{G}=f^{G}$

- Plot deformed shape

Timoshenko Beam with Linear elements

Bernoulli-Euler beam with Hermite-cubic elements

- Calculate

```
\(\rightarrow\) Axial force \(N(x): E A u^{\prime}(x): E A u^{\prime}\)
\(\rightarrow\) Shear force \(Q(x): \quad G A\left(\omega^{\prime}-\theta\right): Q=-M^{\prime}-m=-E I \omega^{\prime \prime \prime}\)
\(\rightarrow\) Bending Moment \(M(x)\) : \(E I\left(\theta^{\prime}\right): M=E I \omega^{\prime \prime}\)
(Timoshenko) (Bernoulti-Euler)
```

Frame Structures in 2D \& 3D
Each bean / column member con he modelled with one or more beam elements.
(Timoshenko / Bernoulli-Euler)

2D Frame Element

Element doff in local coordinates

$$
\underline{d}_{e}^{L}=\left\{\begin{array}{ll}
u_{1} \omega_{1} \theta_{1} & u_{2} \omega_{2} \theta_{2}
\end{array}\right\}
$$

cannot he assembled.
Element doff in Global coordinates

$$
\underline{d}_{e}^{G}\left\{x_{1} y_{1} \theta_{1} \quad x_{2} y_{2} \theta_{2}\right\}
$$

Can he assembled.

The element stiffness matrix and load vectors can also be Transformed:

$$
\begin{aligned}
& \tilde{G}^{h}(\underline{d}, \underline{d})=-\sum_{e=1}^{M} \underline{d}_{e}^{L}\left({\underset{\sim}{k}}_{e}^{L} \underline{d}_{e}^{L}-\underline{f}_{e}^{L}\right) \\
& =-\sum_{e=1}^{M}\left({\underset{\sim}{\tau}}^{\top} \underline{\bar{d}}_{e}^{G}\right)^{\top}\left[{\underset{\sim}{K}}_{e}^{K_{e}}\left({\underset{\sim}{T}}^{T} d_{e}^{G}\right)-\left(T_{\sim}^{T} \underline{f}_{e}^{G}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad-\underline{\bar{d}}^{G}\left[{\underset{\sim}{c}}^{G} \underline{d}^{G}-\underline{f}^{G}\right]=0 \quad \forall \underline{d}^{G}
\end{aligned}
$$

11:33 AM

First, lets construct the 3D Element in local coordinates:
 Element dofs in Local Coordinates:

For Bemoulli-Euler bean
$\frac{6 \text { Dofs }}{\text { Axial }} x_{3}$ per node

$$
{\underset{\sim}{x}}_{y}^{e}=\frac{E I_{y}}{l^{3}}\left[\begin{array}{cccc}
12 & 6 l & -12 & 6 l \\
6 l & 4 l^{2} & -6 l & 2 l^{2} \\
-12 & -6 l & 12 & -6 l \\
\omega_{1} \\
\theta_{2} & 2 l^{2} & -6 l & 4 l^{2}
\end{array}\right](1)
$$

$$
\underset{\sim}{K^{e}}=\frac{E A}{l}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

$$
\text { Torsion in } x_{3} \text { : }
$$

$$
\text { Bending in } x_{2} x_{3} \text { plane: }
$$

$$
\left.{\underset{\sim}{K}}_{x}^{e}=\frac{E I_{x}}{l^{3}}\left[\begin{array}{cccc}
12 & -6 l & -12 & -6 l \\
-6 l & 4 l^{2} & 6 l & 2 l^{2} \\
-12 & 6 l & 12 & 6 l \\
\theta_{1} \\
-6 l & 2 l^{2} & 6 l & 4 l^{2}
\end{array}\right](1) \theta_{2}\right](2)
$$

$$
\underset{\sim}{K_{z}^{e}}=\frac{G J}{l}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

$$
\begin{gathered}
J=I_{x}+I_{y} \\
\text { (polar moment of inertia) }
\end{gathered}
$$

Thus the element contribution:

$$
\widetilde{G}^{\omega}(\underline{d}, \underline{\bar{d}})=-\sum_{e=1}^{M} \underline{d}_{e}^{L} \underline{\sim}^{\top}\left({\underset{\sim}{k}}_{K_{e}^{L}}^{\underline{d}_{e}^{L}}-\underline{f}_{e}^{L}\right)
$$

3D Transformation
To be able to assemble the element matrices and vectors, we need to transform the local co-ordinates to global in 3D:

Thus to transform the local dots to global dofs:

Thus the weak form:

$$
\begin{aligned}
& \widetilde{G}^{h}(\underline{d}, \underline{\bar{d}})=-\sum_{e=1}^{M} \underline{\bar{d}}_{e}^{L}\left({\underset{\sim}{e}}_{e}^{L} \underline{d}_{e}^{L}-\underline{f}_{e}^{L}\right) \\
& =-\sum_{e=1}^{M} \underline{d}_{e}^{G}[\underbrace{\left(\underset{\sim}{T}{\underset{\sim}{c}}_{e}^{L} T^{T}\right.}) \underline{d}_{e}^{G}-\underline{f}_{e}^{G}] \\
& =-{\underset{e}{e}}_{M}^{\bar{d}_{e}^{G}}\left[{\underset{\sim}{k}}_{e}^{G} \underline{d}_{e}^{G}-\underline{f}_{e}^{G}\right]
\end{aligned}
$$

Finally solve:

$$
\Rightarrow \quad-\underline{\bar{d}}^{G^{\top}}\left[{\underset{\sim}{k}}^{G} \underline{d}^{G}-\underline{f}^{G}\right]=0 \quad \forall \underline{\bar{d}}^{G}
$$

(with BCD)

