Recall the problem we were trying to solve:
Given

- Structure (Domain) Geometry $\Omega, \Gamma_{N}, \Gamma_{D}$
- Loads b : body force (self-weight)
\underline{p}_{0} : surface tractions
Find

$$
\underline{x}=\underline{\phi}(\underline{x})
$$

such that

$$
\operatorname{div} \underset{\sim}{\sigma}+\underline{b}=\underline{0} \quad \text { at } \text { all } \underline{x} \in \Omega_{\boldsymbol{1}}
$$

ie. deformed configuration

$$
\frac{\partial \sigma_{i j}}{\partial x_{j}}+b_{i}=0 \quad \text { for } i=1,2,3
$$

Additional information

- Kinematics

Small strain

$$
\begin{aligned}
& \underline{x}=\underline{\varnothing}(\underline{x}) \\
& \underline{u}(\underline{x})=\underline{x}-\underline{x} \\
& \Omega \approx \Omega_{\phi} \\
& \underset{\sim}{\epsilon}=\frac{1}{2}\left(\nabla \underset{\sim}{u}+\nabla{\underset{\sim}{u}}^{\top}\right) \\
& \text { Finite strain } \\
& \underset{\sim}{F}=\underline{\nabla}_{x} \underline{\phi}={\underset{\sim}{\tau}}^{I}+\underset{\sim}{u} \\
& \underset{\sim}{E}=\frac{1}{2}\left({\underset{\sim}{F}}_{\sim}^{\top} \underset{\sim}{F}-\underset{\sim}{I}\right)=\frac{1}{2}(\underset{\sim}{u}+\nabla \underset{\sim}{u}+\nabla \underset{\sim}{u} \nabla \underset{\sim}{u})
\end{aligned}
$$

- Material Properties (at every X)

$$
\begin{gathered}
\underset{\sim}{\sigma}=\underset{\sim}{\widetilde{\sim}} \underset{\sim}{\epsilon} \\
\left(\sigma_{i j}=C_{i j k l} \epsilon_{k l}\right)
\end{gathered}
$$

Hooke's Model: (Isotropic; Lin; Elastic)

$$
\begin{gathered}
\underset{\sim}{\sigma}=\lambda\left(t_{r} \underset{\sim}{\epsilon}\right) \underset{\sim}{I}+2 \mu \underset{\sim}{\epsilon} \\
\left(\sigma_{i j}=\left(\lambda \epsilon_{k k}\right) \delta_{i j}+(2 \mu) \epsilon_{i j}\right)
\end{gathered}
$$

Note

$$
\stackrel{\sigma}{\sim} \sim\left[\begin{array}{lll}
\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right] \& \stackrel{\epsilon}{\sim} \sim\left[\begin{array}{ccc}
\epsilon_{x x} & \epsilon_{x y} & \epsilon_{x z} \\
\epsilon_{y x} & \epsilon_{y y} & \epsilon_{y z} \\
\epsilon_{z x} & \epsilon_{z y} & \epsilon_{z z}
\end{array}\right]
$$

Using Voight Notation

$$
\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{z z} \\
\hline \sigma_{x y} \\
\sigma_{y z} \\
\sigma_{z x}
\end{array}\right\}=\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccc|cc}
(1-\nu) & \nu & \nu & \\
\nu & (1-\nu) & \nu & 0 \\
\nu & \nu & (1-\nu) & & \\
\hline & & & \frac{1-2 \nu}{2} & 0 \\
& 0 & 0 & 0 \\
& & 0 & 0 & \frac{1-2 \lambda}{2}
\end{array}\right]\left\{\begin{array}{c}
\epsilon_{x x} \\
\epsilon_{y y} \\
\epsilon_{z z} \\
\frac{\epsilon_{x y}}{2 \epsilon_{x y}} \\
2 \epsilon_{y z} \\
2 \epsilon_{z x}
\end{array}\right\}=\gamma_{x y}=\gamma_{y z}
$$

ie. $\underline{\sigma}=\underset{\sim}{D}$
(* Careful)

2D Plane Problems

- Plane Stress

$$
\begin{aligned}
\sigma_{33}=0 ; & \sigma_{13}
\end{aligned}=\sigma_{31}=0 ; ~ 子 \sigma_{23}=\sigma_{32}=0
$$

Stress-strain relationship:

$$
\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right\}=\frac{E}{\left(1-\nu^{2}\right)}\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{array}\right]\left\{\begin{array}{c}
\epsilon_{x x} \\
\epsilon_{y y} \\
2 \epsilon_{x y}
\end{array}\right\} \quad \text { ie } \begin{aligned}
& \sigma=D_{p \sigma} \in \\
& \text { and } \\
& \epsilon_{z z}=\frac{-\nu}{E}\left(\sigma_{x x}+\sigma_{y y}\right)
\end{aligned}
$$

- Plane Strain

$$
\begin{aligned}
& \epsilon_{33}=0 ; \epsilon_{13}=\epsilon_{31}=0 ; \\
& \epsilon_{23}=\epsilon_{23}=0
\end{aligned}
$$

Stress-strain relationship:

$$
\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right\}=\frac{E}{(1+\gamma)(1-2 \gamma)}\left[\begin{array}{ccc}
(1-\gamma) & \nu & 0 \\
\gamma & (1-\nu) & 0 \\
0 & 0 & \frac{1-2 \nu}{2}
\end{array}\right]\left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
2 \epsilon_{x y}
\end{array}\right\} \quad \text { ie } \quad \begin{aligned}
& \sigma=D_{\sim E} \epsilon \\
&
\end{aligned}
$$

Strong forms

- Elasticity:

$$
\operatorname{div} \underset{\sim}{\sigma}+\underline{b}=0 \quad \text { in } \Omega_{\phi}
$$

$$
\underset{\sim}{\sigma} \underline{n}=\underline{t}_{N} \text { on } \Gamma_{N} \phi
$$

BC: $\quad \begin{aligned} \underline{\sigma} \underline{n} & =\underline{t}_{N} \quad \text { on } \Gamma_{N} \\ \underline{u} & =\underline{u}_{D} \quad \text { on } \Gamma_{D \phi}\end{aligned}$

$$
\underline{u}=\underline{u}_{D} \quad \text { on } \Gamma_{D}
$$

Find $\underline{u}(\underline{x})$
(vector field.). $\quad\left\{\begin{array}{l}u_{x}(x, y, z) \\ u_{y}(x, y, z) \\ u_{z}(x, y, z)\end{array}\right\}$

- Heat conduction Find $\theta(x)$ (scalar field)

$$
\begin{aligned}
\operatorname{div} \underline{q} & =f & & \text { in } \Omega \\
\underline{q} \cdot \underline{n} & =h & & \text { on } \Gamma_{N} \\
\theta & =\theta_{D} & & \text { on } \Gamma_{D}
\end{aligned}
$$

$$
\text { BC } \quad \underline{q} \cdot \underline{n}=h \quad \text { on } \Gamma_{N}
$$

Additional Info:

$$
\begin{aligned}
\text { Temperature Gradient } & \equiv \underline{\nabla} \quad \leadsto\left\{\begin{array}{l}
\frac{\partial \theta}{\partial x_{1}} \\
\frac{\partial \theta}{\partial x_{2}}
\end{array}\right\} ; ~
\end{aligned}
$$

Fourier's Law: $\quad \underline{q}=-\underset{\sim}{\kappa}(\nabla \underline{\theta})$
Thus

$$
\operatorname{div}(\underset{\sim}{\kappa}(\underline{\nabla} \theta))+f=0 \quad \text { in } \Omega
$$

ie $\quad \frac{\partial}{\partial x_{i}}\left[\kappa_{i j}\left(\frac{\partial \theta}{\partial x_{j}}\right)\right]+f=0$
Equivalently: $\quad\left(K_{i j} \quad \theta, j\right), i+f=0 \quad\left[\begin{array}{ll}x & v \\ x & x\end{array}\right]\left[\begin{array}{l}v \\ x\end{array}\right]$

$$
\left[\begin{array}{ll}
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}}
\end{array}\right]\left[\begin{array}{ll}
k_{11} & k_{12} \\
k_{21} & k_{22}
\end{array}\right]\left[\begin{array}{l}
\frac{\partial}{\partial x_{1}} \\
\frac{\partial}{\partial x_{2}}
\end{array}\right] \theta+f=0
$$

Heat Conduction:

$$
\begin{aligned}
G(\theta, \bar{\theta}) & \equiv \int_{\Omega} \bar{\theta}[\operatorname{div}(\underset{\sim}{\underset{\sim}{k}(\nabla \theta)})+f] d \Omega \\
& =\int_{\Omega} \bar{\theta}[\overbrace{\left(k_{i j} \theta_{, j}\right), i}^{q_{i}}+f] d \Omega
\end{aligned}
$$

For integration by parts in $2-D \& 3-D$
Recall from 1-D: (Integration by parts/Product Rule)

$$
\begin{aligned}
& \frac{d(u v)}{d x}= v \frac{d u}{d x}+u \frac{d v}{d x} \\
& \int_{0}^{l} u \frac{d v}{d x} d x= \\
& \underbrace{\int_{[u v]_{0}}^{[u v]_{l}} d(u v)}_{[u v]_{0}^{l}}-\int_{0}^{l}\left(\frac{d u}{d x}\right) v d x \int_{c}^{l}\left(\int_{a}^{b}() d x\right) d y \\
&\text { (because } \left.\int_{a}^{b} \frac{d f(x)}{d x} d x=f(b)-f(x)\right)
\end{aligned}
$$

Aside 1:

$$
\begin{aligned}
& \int_{\Omega}() d \Omega \\
& \iint_{2 D}^{/} \iiint_{3 D}
\end{aligned}
$$

Similarly:

$$
\operatorname{div}(\bar{\theta} \underline{q})=\nabla \bar{\theta} \cdot \underline{q}+\bar{\theta} \operatorname{div} \underline{q} \quad \text { (product rule) }
$$

ie. $\left(\bar{\theta} q_{i}\right)_{i}=\bar{\theta}, i q_{i}+\bar{\theta} q_{i, i}=\left(\frac{\partial \bar{\theta}}{\partial x_{1}} q_{1}+\frac{\partial \bar{\theta}}{\partial x_{2}} q_{2}+\frac{\partial \bar{\theta}}{\partial x_{3}} q_{3}\right)+\bar{\theta}\left(\frac{\partial q_{1}}{\partial x_{1}}+\frac{\partial q_{2}}{\partial x_{2}}+\frac{\partial q_{3}}{\partial x_{3}}\right)$
Thus

$$
\begin{aligned}
& G(\theta, \bar{\theta})=-\int_{\Omega}\left(\bar{\theta},_{i} k_{i j} \theta_{j j}\right) d \Omega+\underbrace{\int_{\Omega}\left(\bar{\theta} q_{i}\right)_{i}} d \Omega+\int_{\Omega} \bar{\theta} f d \Omega \\
& \oint_{\Gamma}\left(\bar{\theta} q_{i}\right) n_{i} d \Gamma \\
& \int_{\Gamma_{D}} \bar{\theta} q_{i} n_{i} d \Gamma+\int_{\Gamma} \bar{\theta} q_{i} n_{i} d \Gamma \\
& \Gamma_{D} \quad \Gamma_{N} \\
& G(\theta, \bar{\theta})=\underbrace{-\int_{\Omega}\left(\bar{\theta}_{i} k_{i j} \theta_{i j}\right) d \Omega}_{-W_{I}}+\underbrace{\int_{\Omega} \bar{\theta} f d \Omega+\int_{\Gamma_{N}} \bar{\theta} h d \Gamma}_{W_{E}} \\
& \text { Aside 2: }
\end{aligned}
$$

(Divergence Theorem)

$$
\begin{aligned}
& \int_{\Omega} \operatorname{div}(\underline{q}) d \Omega=\oint_{\Gamma}(\underline{q} \cdot \underline{n}) d \Gamma \\
& \text { ie. } \int_{\Omega} q_{i, i} d \Omega=\oint_{\Gamma} q_{i} n_{i} d \Gamma
\end{aligned}
$$

Ch3-2d3dFEM Page 4

Discretization
At this stage, we need to "discretize" our problem domain into smaller element domains.

Recall, is 1D we divided as:

In 2-D \& 3-D, this can he done in a variety of ways.
For example, consider the 2D domain shown below, along with four possible discretizations.
(i) Regular rectangular grid
(ii) Regular Triangular grid
(iii) Inregular Triangular grid
(iv) Arbitrary Domain Triangulation
(using Delaunay Triangulation)

Having discretized our domain, we can write weak form as a sum of integrals.

$$
\begin{array}{|r}
G(\theta, \bar{\theta})=-\sum_{e=1}^{M} \int_{\Omega^{e}}\left(\bar{\theta}_{i} K_{i j} \theta_{, j}\right) d \Omega+\sum_{e=1}^{M} \int_{\Omega^{e}} \bar{\theta} f d \Omega+\sum_{e=1}^{M} \int_{\Gamma_{N}} \bar{\theta} h d \Gamma \\
\text { Note: This is still "exact". We have only discrete }
\end{array}
$$

Note: This is still "exact". We have only discretized our domain (we have not yet apporimated our solution).

Using these dicretizations, we can represent some function $f(x, y)$ In this case, (for illustration only) $f(x, y)=\sin \left(\frac{x \pi}{L}\right) * \sin \left(\frac{y \pi}{D}\right)$

Clearly, the "quality" of the approximation depends upon the choice of the disaretization.

Recall, in 1-D we used the following approximation

Using this, we could express our solution as:

$$
u(x) \approx u_{e}^{h}(x)=\underset{\sim}{N} \underline{d}=d_{1}^{e}\left(N_{1}^{e}(x)\right)+d_{2}^{e}\left(N_{2}^{e}(x)\right)
$$

This, then allows us to express the global solution as an "assembly" of all elements.

An analogous thing happens in $2 D \& 3 D$:

$$
\begin{aligned}
\theta(x, y) \approx \theta_{e}^{h}(x, y) & =\sum_{\alpha=1}^{n_{i}^{e}} N_{\alpha}^{e} d_{\alpha}^{e} \\
\theta_{e}^{h}(x, y) & =\left[\begin{array}{lll}
N_{1}^{e} & N_{2}^{e} & N_{3}^{e}
\end{array}\right]\left[\begin{array}{l}
d_{1}^{e} \\
d_{2}^{e} \\
d_{3}^{e}
\end{array}\right]=\underset{\sim}{N} \underset{\sim}{d} \\
\bar{\theta}(x, y) \approx \bar{\theta}_{e}^{h}(x, y) & =\underset{\sim}{N} \underline{d}
\end{aligned}
$$

$$
\theta_{e}^{h}(x, y)=\alpha_{1}^{e}\left(N_{1}^{e}(x, y)\right)
$$

$$
+d_{2}^{e}\left(N_{2}^{e}(x, y)\right)
$$

$$
+d_{3}^{e}\left(N_{3}^{e}(x, y)\right)
$$

To obtain the actual functions $N_{1}(x, y), N_{2}(x, y), N_{3}(x, y)$:

$$
\begin{align*}
\partial_{e}^{h}(x, y) & =d_{1}^{e}\left(N_{1}^{e}(x, y)\right)+d_{2}^{e}\left(N_{2}^{e}(x, y)\right)+d_{3}^{e}\left(N_{3}^{e}(x, y)\right)=\sim_{\sim}^{d} \\
\theta_{e}^{h}(x, y) & =a_{1}+a_{2} x+a_{3} y \quad(x, y) \\
& =\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
y
\end{array}\right]=\underline{a}^{\top} \underline{h}(x, y)
\end{align*}
$$

Thus we have three equations:

$$
\begin{aligned}
& d_{1}^{e}=a_{1}+a_{2} x_{1}+a_{3} y_{1} \\
& d_{2}^{e}=a_{1}+a_{2} x_{2}+a_{3} y_{2} \\
& d_{3}^{e}=a_{1}+a_{2} x_{3}+a_{3} y_{3}
\end{aligned}
$$

solving for a_{1}, a_{2}, a_{3} :

$$
\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\}=\left[\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right]^{-1}\left\{\begin{array}{l}
d_{1}^{e} \\
d_{2}^{e} \\
d_{3}^{e}
\end{array}\right\}
$$

Substituting back into \because :

$$
\theta_{e}^{h}(x, y)=\frac{1}{2 \Delta}[\underbrace{\left(A_{1}+B_{1} x+C_{1} y\right)}_{N_{1}(x, y)} d_{1}^{e}+\underbrace{\left(A_{2}+B_{2} x+C_{2} y\right)}_{N_{2}(x, y)} d_{2}^{e}+\underbrace{\left(A_{3}+B_{3} x+C_{3} y\right.}_{N_{3}(x, y)} d_{3}^{e}
$$

where

$$
\left.\begin{aligned}
& \text { ere } \quad \begin{array}{l}
A_{1}
\end{array}=x_{2} y_{3}-x_{3} y_{2} \\
& B_{1}=y_{2}-y_{3} \\
& C_{1}=x_{3}-x_{2}
\end{aligned}\left|\begin{array}{l}
A_{2}=x_{3} y_{1}-x_{1} y_{3} \\
B_{2}=y_{3}-y_{1} \\
C_{2}=x_{1}-x_{3}
\end{array}\right| \begin{aligned}
& A_{3}=x_{1} y_{2}-x_{2} y_{1} \\
& B_{3}=y_{1}-y_{2} \\
& C_{3}=x_{2}-x_{1} \\
& N_{\alpha}(x, y)=\frac{1}{2 \Delta}\left(A_{\alpha}+B_{\alpha} x+C_{\alpha} y\right)
\end{aligned} \quad \begin{array}{lll}
1 & x_{1} y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array} \right\rvert\,
$$

consider:
ie.

$$
\begin{aligned}
\sum_{\alpha=1}^{3} N_{\alpha}(x, y) & =N_{1}(x, y)+N_{2}(x, y)+N_{3}(x, y) \\
& =\frac{1}{2 \Delta}[\underbrace{\left(A_{1}+A_{2}+A_{3}\right)}_{2 \Delta}+\underbrace{(\underbrace{\left.B_{1}+B_{2}+B_{3}\right)}_{1} x+\underbrace{\left(C_{1}+C_{2}+C_{3}\right)}_{0} y]}_{0}
\end{aligned}
$$

Substituting the approximation $\quad \theta_{e}^{h}(x, y)=\underset{\sim}{\mathcal{N}}$

$$
\begin{aligned}
& \nabla \underline{\theta}_{e}^{h}=\left[\theta_{e}^{h}(x, y)\right]={\underset{\sim}{N}}^{d}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{q}^{h}(d, \underline{d})=-d^{G^{T}}\left(k^{G} d^{G}-f^{G}\right)=\underline{0} \quad \forall \underline{d}^{G}
\end{aligned}
$$

Assembly in $2 D$ \& $3 D$ (sD)
Total number of nodes: N
Total number of elements: M

Degrees of freedom

- Scalar problem:
$\frac{\text { Per Node }}{1} \quad \frac{\text { Total }}{N}$

$$
\underset{\sim}{A} \underset{\sim}{\underset{\sim}{k}}(0,0)={\underset{\sim}{k}}^{q}(0,0)+{\underset{\sim}{c}}^{k^{e}}
$$

Example:
For the element " Ωe ", find:

- shape functions, $\underset{\sim}{{\underset{\sim}{B}}^{e}}$
- "stiffness" matrix $\underset{\sim}{K} \quad($ say $\underset{\sim}{k}=k \underset{\sim}{I})$

$$
\begin{aligned}
\theta_{e}^{h}(x, y) & =a_{1}+a_{2} x+a_{3} y \\
d_{1}^{e} & =a_{1}+a_{2}(2)+a_{3}(1) \\
d_{2}^{e} & =a_{1}+a_{2}(5)+a_{3}(3) \\
d_{3}^{e} & =a_{1}+a_{2}(3)+a_{3} \text { (4) }
\end{aligned}
$$

Solving

$$
\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\}=\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 5 & 3 \\
1 & 3 & 4
\end{array}\right]^{-1}\left\{\begin{array}{l}
d_{1}^{e} \\
d_{2}^{e} \\
d_{3}^{e}
\end{array}\right\}=\frac{1}{7}\left[\begin{array}{ccc}
11 & -5 & 1 \\
-1 & 3 & -2 \\
-2 & -1 & 3
\end{array}\right]\left\{\begin{array}{l}
d_{1}^{e} \\
d_{2}^{e} \\
d_{3}^{e}
\end{array}\right\}
$$

Substituting back in

$$
\begin{aligned}
\theta_{h}^{e}(x, y) & =a_{1}+a_{2} x+a_{3} y \\
& =\frac{1}{7}\left[\left(11 d_{1}^{e}-5 d_{2}^{e}+1 d_{3}^{e}\right)+\left(-d_{1}^{e}+3 d_{2}^{e}-2 d_{3}^{e}\right) x+\left(-2 d_{1}^{e}-d_{2}^{e}+3 d_{3}^{e}\right) y\right] \\
\text { Rearranging } & =\frac{1}{7}[(\underbrace{(1-x-2 y)}_{N_{1}^{e}(x, y)} d_{1}^{e}+\underbrace{(-5+3 x-y)}_{N_{2}^{e}(x, y)} d_{2}^{e}+\underbrace{(1-2 x+3 y)}_{N_{3}^{e}(x, y)} d_{3}^{e}]
\end{aligned}
$$

Shape functions: $\underset{\sim}{N}=\left[N_{1}^{e}(x, y) \quad N_{2}^{e}(x, y) \quad N_{3}^{e}(x, y)\right]$

Derivatives:

$$
{\underset{\sim}{B}}^{e}=\left[\begin{array}{lll}
N_{1,1}^{e} & N_{2,1}^{e} & N_{3,1}^{e} \\
N_{1,2}^{e} & N_{2,2}^{e} & N_{3,2}^{e}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 3 & -2 \\
-2 & -1 & 3
\end{array}\right]
$$

Element stiffness matonix :

$$
\begin{aligned}
& \underset{\sim}{K^{e}}=\int_{\Omega^{e}} \stackrel{B^{\top}}{\sim} \underset{\sim}{\mathcal{B}} \underset{\sim}{B} d \Omega=K \int_{\Omega^{e}}\left[\begin{array}{cc}
-1 & -2 \\
3 & -1 \\
-2 & 3
\end{array}\right]\left[\begin{array}{ccc}
-1 & 3 & -2 \\
-2 & -1 & 3
\end{array}\right] d \Omega \\
& =K\left[\begin{array}{ccc}
5 & -1 & -4 \\
& 10 & -9 \\
\text { sym } & 13
\end{array}\right] \underbrace{\int_{\Omega^{e}} d \Omega}_{A^{e}}=K A\left[\begin{array}{lll}
x & x & x \\
x & x & x \\
x & x & x
\end{array}\right]
\end{aligned}
$$

Elasticity:

$$
\begin{aligned}
G(\underline{u}, \underline{\bar{u}}) & \equiv \int_{\Omega} \underline{\bar{u}} \cdot(\operatorname{dw} \underset{\sim}{\sigma}+\underline{b}) d \Omega \\
& =\int_{\Omega} \bar{u}_{i}\left[\left(\sigma_{i j, j}\right)+b_{i}\right] d \Omega
\end{aligned}
$$

Consider

$$
\begin{aligned}
\left(\bar{u}_{i} \sigma_{i j}\right)_{, j}= & \bar{u}_{i, j} \sigma_{i j}+\bar{u}_{i} \sigma_{i j, j} \\
& \bar{u}_{i} \sigma_{i j, j}=\left(\bar{u}_{i} \sigma_{i j}\right)_{, j}-\bar{u}_{i, j} \sigma_{i j}
\end{aligned}
$$

Thus

$$
G(\underline{u}, \underline{\bar{u}})=-\int_{\Omega} \underbrace{\bar{u}_{i, j} \sigma_{i j}}_{\underset{\sim}{\bar{\epsilon}}: \underset{\sim}{\sigma}} d \Omega+\int_{\Omega} \underbrace{\bar{u}_{i} b_{i}}_{\underline{\underline{u}} \cdot \underline{b}} d \Omega+\oint_{\Gamma}\left(\bar{u}_{i} \sigma_{i j}\right) n_{j} d \Gamma
$$

$$
\begin{aligned}
& \text { Also Note: } \\
& \left.\bar{u}_{i, j}=\underbrace{\frac{1}{2}\left(\bar{u}_{i, j}+\bar{u}_{j, i}\right)}_{\text {sym } \nabla \bar{\sim}(=\bar{\epsilon})}+\underbrace{\frac{1}{2}\left(\bar{u}_{i, j}-\bar{u}_{j, i}\right)}_{\text {skew } \nabla \bar{u}} \right\rvert\, \int_{\Gamma_{D}} \bar{u}_{i} t_{0} t_{D_{i}} d \Gamma+\int_{\Gamma_{N}}^{\int_{\underline{u}}^{\bar{u}_{i}} \underbrace{t_{N_{i}}}_{\underline{\bar{u}} \cdot \underline{t}_{N}}} \\
& \bar{u}_{i, j} \sigma_{i j}=\bar{\epsilon}_{i j} \sigma_{i j} \\
& \begin{array}{l}
=\underset{\sim}{\bar{\epsilon}}: \underset{\sim}{\sigma}=\left[\begin{array}{ll}
x & x \\
x & x
\end{array}\right]:\left[\begin{array}{ll}
x & x \\
x & x
\end{array}\right]=\bar{\epsilon}_{11} \sigma_{11}+\underbrace{\bar{\epsilon}_{12} \sigma_{12}+\bar{\epsilon}_{21} \sigma_{21}}_{\mid}+\bar{\epsilon}_{22} \sigma_{22} \\
\text { Voight Notation: }
\end{array}
\end{aligned}
$$

In the Voight Notation:

$$
\begin{aligned}
=\underline{\bar{\epsilon}} \cdot \underline{\sigma} & =\underline{\epsilon}^{\top} \underline{\sigma}=\left[\begin{array}{lll}
\bar{\epsilon}_{x x} & \bar{\epsilon}_{y y} & \bar{\gamma}_{x y}
\end{array}\right]\left[\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right] \\
& =\bar{\epsilon}^{\top} \underset{\sim}{D_{p}} \underline{\epsilon}
\end{aligned}
$$

Thus,

Discretize

$$
G(\underline{u}, \bar{u})=\sum_{e=1}^{M}\left[-\int_{\Omega^{e}}\left(\underline{\epsilon}^{\top} \underset{\sim}{D} \underline{\epsilon}\right) d \Omega+\int_{\Omega^{e}} \underline{\bar{u}}^{\top} \underline{b} d \Omega+\int_{\Gamma_{N}^{e}} \underline{\underline{u}}^{\top} \underline{t}_{N} d \Gamma\right]
$$

Now introduce Approximation within every element Ω^{e} :

$$
\begin{aligned}
& \begin{array}{l}
\underline{u}(x, y)= \\
N^{e} \underline{d}^{e}
\end{array} \\
& \left\{\begin{array}{l}
u_{1}(x, y) \\
u_{2}(x, y)
\end{array}\right\}=\left[\begin{array}{ll:ll:ll}
N_{1} & 0 & N_{2} & 0 & N_{3} & 0 \\
0 & N_{1} & 0 & N_{2} & 0 & N_{3}
\end{array}\right]\left[\begin{array}{c}
d_{1}^{e} \\
d^{e} \\
\hdashline d_{2}^{e} \\
d_{4}^{e} \\
\hdashline d_{4}^{e} \\
d_{5}^{e} \\
d_{6}^{e}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \underline{\bar{u}}(x, y)={\underset{\sim}{N}}^{e} \underline{a}^{e} \\
& \underline{E}(x, y)=\quad \quad_{\sim}^{e} \underline{d}^{e} \\
& \left\{\begin{array}{l}
\sigma_{x x} \\
\epsilon_{y y} \\
\gamma_{x y}
\end{array}\right\}=\left[\begin{array}{cc:cc:cc}
N_{1,1} & 0 & N_{2,1} & 0 & N_{3,1} & 0 \\
0 & N_{1,2} & 0 & N_{2,2} & 0 & N_{3,2} \\
N_{1,2} & N_{1,1} & N_{2,2} & N_{2,1} & N_{3,2} & N_{3,1}
\end{array}\right]\left[\begin{array}{c}
d_{1}^{e} \\
d_{2}^{e} \\
\hdashline d_{e}^{e} \\
d_{4}^{e^{3}} \\
\hdashline d_{5}^{e} \\
d_{6}^{e}
\end{array}\right] \\
& \underline{\sigma}(x, y)=\underset{\sim}{D}{\underset{\sim}{B}}^{e} \underline{d}^{e}
\end{aligned}
$$

Thus the Final Weak form:

$$
\begin{aligned}
& \Rightarrow \quad \tilde{G}^{n}(\underline{d}, \bar{d})=-\underline{d}^{G}\left(K^{G} \underline{d}^{G}-f^{G}\right)
\end{aligned}
$$

where

$$
{\underset{\sim}{k}}^{G}=\underset{e=1}{\mathbb{A}} \underset{\sim}{K^{e}} ; \quad \underline{f}^{G}={\underset{e=1}{M} \underline{f}^{e}}_{e=1}^{n}
$$

Assembly in $2 D$ \& $3 D$ (sD)
Total number of nodes: N
Total number of elements: M

Degrees of freedom

- Scalar problem:

$\frac{\text { Per Node e }}{1}$		Total s
$s N$		

Global Degrees of freedom corresponding to node " i ":

$$
s *(i-1)+1 \quad ; \quad s *(i-1)+2 \quad \ldots \quad s *(i-1)+s
$$

For example

global element dots:

Integrals for the " f " vector
Recall,

- Heat Conduction $\quad f^{G}=A_{e=1}^{M} \underline{f}^{e}$
where

$$
\begin{aligned}
{\underset{(3 \times 1)}{f}}_{f}^{f} & \int_{\Omega^{e}} N_{\sim}^{\top} f d \Omega+\int_{\Gamma_{N}^{e}} N^{\top} h d \Gamma \int_{e=7}^{e=4} \\
& =\int_{\Omega^{e}}\left[\begin{array}{l}
N_{1}^{e}(x, y) \\
N_{2}^{e}(x, y) \\
N_{3}^{e}(x, y)
\end{array}\right] f(x, y) d \Omega+\int_{\Gamma_{0}}\left[\begin{array}{l}
N_{1}^{e}(x, y) \\
N_{2}^{e}(x, y) \\
N_{3}^{e}(x, y)
\end{array}\right] h(x, y) d \Gamma
\end{aligned}
$$

- 2D Elasticity

$$
\underline{f}^{G}=\mathbb{A}_{e=1}^{M} \underline{f}^{e}
$$

where

$$
\begin{aligned}
& \frac{f^{e}}{(6 \times 1)}=\int_{\Omega^{e}}{\underset{\sim}{N}}^{\top} \underline{b} d \Omega+\int_{\Gamma_{N}}{\underset{\sim}{N}}^{\top} \underline{t}_{N} d \Gamma \\
& =\int_{\Omega^{e}}\left[\begin{array}{cc}
N_{1} & 0 \\
0 & N_{1} \\
\hdashline N_{2} & 0 \\
0 & N_{2} \\
\hdashline N_{3} & 0 \\
0 & N_{3}
\end{array}\right]\left\{\begin{array}{l}
b_{x}(x, y) \\
b_{y}(x, y)
\end{array}\right\} d \Omega+\int_{N}^{e}\left[\begin{array}{cc}
N_{1} & 0 \\
0 & N_{1} \\
\hdashline N_{2} & 0 \\
0 & N_{2} \\
\hdashline \cdots & \cdots \\
N_{3} & 0 \\
0 & N_{3}
\end{array}\right]\left\{\begin{array}{l}
t_{N_{x}}(x, y) \\
t_{N_{y}}(x, y)
\end{array}\right\} d \Gamma
\end{aligned}
$$

These integrals will, in general, need to le evaluated numerically.
However, for Linear 3 -node triangles $\left(\Omega^{e}=\Delta\right)$,
and when $f(x, y)$ (or $b(x, y)$) are constants $f_{0}\left(\right.$ or $\left.\underline{b}_{0}\right)$ and when $h(x, y)$ (or $t_{N}(x, y)$) are constants h_{0} (or $\underline{t}_{N_{0}}$)

Then, we can find these integrals exactly for $a \Delta$.
This will help us save computational time when we implement it on a computer (MATLAB).

Note: If you have a non-constant "f" function, you can still assume that f is constant within one Δ. Then as you refine your mesh, your solution will converge.

Lets first consider the domain tenn:

$$
\begin{aligned}
\int_{\Omega^{e}} N_{\alpha} f_{0} d \Omega & =f_{0} \int_{\Delta} N_{\alpha}(x, y) d \Delta \\
& =\frac{f_{0}}{2 \Delta} \int_{\Delta}\left(A_{\alpha}+B_{\alpha} x+C_{\alpha} y\right) d \Delta \\
& =\frac{f_{0}}{2 \Delta}[A_{\alpha}(\underbrace{\int_{\Delta} d \Delta}_{\Delta})+B_{\alpha}(\underbrace{\int_{\Delta} x d \Delta}_{x_{c} \Delta})+C_{\alpha}(\underbrace{\int_{\Delta} y d \Delta}_{y_{c} \Delta})]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus, } \\
& \begin{aligned}
\int_{\Omega^{e}} N_{\alpha}(x, y) f_{0} d \Omega & =\frac{f_{0}}{2}\left[A_{\alpha}+B_{\alpha}\left(\frac{x_{1}+x_{2}+x_{3}}{3}\right)+C_{\alpha}\left(\frac{\left.y_{1}+y_{2}+y_{3}\right)}{3}\right)\right] \\
& =\frac{f_{0}}{2}\left[\left(\frac{A_{\alpha}+B_{\alpha} x_{1}+C_{\alpha} y_{1}}{3}\right)+\left(\frac{A_{\alpha}+B_{\alpha} x_{2}+C_{\alpha} y_{2}}{3}\right)+\left(\frac{\left.A_{\alpha}+B_{\alpha} x_{3}+C_{\alpha} y_{3}\right)}{3}\right)\right] \\
& =\frac{f_{0}}{2}[\frac{1}{3}(2 \Delta) \underbrace{\frac{A_{\alpha}+B_{\alpha} x_{\alpha}+C_{\alpha} y_{\alpha}}{2 \Delta}}_{1})+0+0] \quad(\text { no sum on } \alpha)
\end{aligned}
\end{aligned}
$$

$$
\Rightarrow \int_{\Omega^{e}} N_{\alpha}(x, y) f_{0} d \Omega=\frac{f_{0} \Delta}{3}
$$

when " f " com he assumed constant.

Now consider the boundary term

$$
\int_{\Gamma_{N}^{e}} N_{\dot{\alpha}}(x, y) h_{0} d \Gamma^{e}=h_{\Gamma_{N}} \sum_{N}\left[\int_{0}^{1} N_{\alpha}(x(s), y(s)) d s\right]
$$

We can express for the edge 1-2:

$$
\left.\begin{array}{r}
x(s)=(1-s) x_{1}+s x_{2} \\
y(s)=(1-s) y_{1}+s y_{2}
\end{array}\right] \begin{array}{r}
\text { Note } s=0 \Rightarrow(x, y)=\left(x_{1} y_{1}\right) \quad(l=0) \\
s=1 \Rightarrow(x, y)=\left(x_{2} y_{2}\right)\left(l=l_{e}\right) \\
l(s)=s l_{e} \Rightarrow \frac{d l}{d s}=l_{e}
\end{array}
$$

Thus $N_{\alpha}(x, y)=\frac{1}{2 \Delta}\left(A_{\alpha}+B_{\alpha} x+C_{\alpha} y\right)$

$$
\begin{aligned}
\Rightarrow \quad \tilde{N}_{\alpha}(s)=\frac{1}{2 \Delta}\left(A_{\alpha}+B_{\alpha} x_{1}+C_{\alpha} y_{1}\right)+\frac{1}{2 \Delta}\left[B_{\alpha}\left(x_{2}-x_{1}\right)+C_{\alpha}\left(y_{2}-y_{1}\right)\right] s \\
h_{0} \int_{\Gamma^{e}} N_{\alpha}(x, y) d r=h_{0} \int_{0}^{l_{c}} N_{\alpha}(x, y) d l=h_{0} \int_{0}^{1} \tilde{N}_{\alpha}(s) \widetilde{\left(\frac{d l}{d s}\right)} d s
\end{aligned}
$$

$$
\begin{aligned}
& h_{0} \int_{\Gamma^{e}} N_{\alpha}(x, y) d r=h_{0} \int_{0}^{l e} N_{\alpha}(x, y) d l=h_{0} \int_{0}^{1} \widetilde{N}_{\alpha}(s) \overbrace{\left(\frac{d l}{d s}\right)}^{l e} d s \\
& =\frac{h_{0} l_{e}}{2 \Delta}[(A_{\alpha}+B_{\alpha} x_{1}+C_{\alpha} y_{1} \underbrace{\int_{0}^{1} d s}+\left[B_{\alpha}\left(x_{2}-x_{1}\right)+C_{\alpha}\left(y_{2}-y_{1}\right)\right] \underbrace{1}_{1 / 2} \int_{0}^{1} s d s] \\
& =\frac{h_{0} l_{e}}{2 \Delta}\left[A_{\alpha}+B_{\alpha}\left(\frac{x_{1}+x_{2}}{2}\right)+C_{\alpha}\left(\frac{y_{1}+y_{2}}{2}\right)\right] \\
& =\frac{h_{0} l_{e}}{2 \Delta}\left[\left(\frac{A_{\alpha}+B_{\alpha} x_{1}+C_{\alpha} y_{1}}{2}\right)+\left(\frac{A_{\alpha}+B_{\alpha} x_{2}+C_{\alpha} y_{2}}{2}\right)\right] \\
& =\frac{h_{0} l_{e}}{2}[\underbrace{\left(\frac{A_{\alpha}+B_{\alpha} x_{\alpha}+C_{\alpha} y_{\alpha}}{2 \Delta}\right)}_{1}+0] \quad(\text { no sun on } \alpha) \\
& \text { In general for edge } i-j \text { : }
\end{aligned}
$$

$$
\int_{\Gamma_{N}^{e}(i, j)} N_{\alpha}(x, y) h_{0} d \Gamma=\frac{h_{0} l_{e}}{2}
$$

when " h " can le assumed constant.

Consider
$f=f_{0}$ (constant) on Δ
$h=h_{0}$ (constant) on 1-2:

$$
N_{\alpha}(x, y)=\frac{1}{2 \Delta}\left(A_{\alpha}+B_{\alpha} x+C_{\alpha} y\right)
$$

$$
\begin{aligned}
& A_{1}=x_{2} y_{3}-x_{3} y_{2} \left\lvert\, \begin{array}{l|l}
A_{2}=x_{3} y_{1}-x_{1} y_{3} & A_{3}=x_{1} y_{2}-x_{2} \\
B_{1} & =y_{2}-y_{3} \\
B_{2}=y_{3}-y_{1} & B_{3}=y_{1}-y_{2} \\
C_{1} & =x_{3}-x_{2} \\
C_{2}=x_{1}-x_{3} & C_{3}=x_{2}-x_{1} \\
\underbrace{11-x-2 y)}_{N_{1}^{e}(x, y)} d_{1}^{e}+\underbrace{(-5+3 x-y)}_{N_{2}^{e}(x, y)} d_{2}^{e}+\underbrace{(1-2 x+3 y)}_{N_{3}^{e}(x, y)} d_{3}^{e}]
\end{array}\right.,
\end{aligned}
$$

Thus

$$
\int_{\Omega} N_{\alpha}(x, y) f_{0} d \Omega=\frac{f_{0}}{2}\left[A_{\alpha}+B_{\alpha}\left(\frac{x_{1}+x_{2}+x_{3}}{3}\right)+C_{\alpha}\left(\frac{y_{1}+y_{2}+y_{3}}{3}\right)\right]
$$

Note: $2 \Delta=A_{1}+A_{2}+A_{3}=7 \Rightarrow \Delta=3.5 \quad x_{c}=\frac{10}{3}=3.333 \quad y_{c}=\frac{8}{3}=2.667$

$$
\begin{aligned}
& \int_{\Omega^{e}} N_{1}(x, y) f_{0} d \Omega=\frac{f_{0}}{2}\left[11+(-1)\left(\frac{10}{3}\right)+(-2)\left(\frac{8}{3}\right)\right]=f_{0}(1 / 3) \times 3.5 \\
& \int_{\Omega^{e}} N_{2}(x, y) f_{0} d \Omega=\frac{f_{0}}{2}\left[-5+3\left(\frac{10}{3}\right)+(-1)(8 / 3)\right]=f_{0}(1 / 3) \times 3.5 \\
& \int_{\Omega^{e}} N_{3}(x, y) f_{0} d \Omega=\frac{f_{0}}{2}\left[1+(-2)\left(\frac{10}{3}\right)+3\left(\frac{8}{3}\right)\right]=f_{0}(1 / 3) \times 3.5
\end{aligned}
$$

And

$$
\begin{aligned}
& \int_{\Gamma_{N}^{e}} N_{\alpha} h_{0} d r=h_{0} \int_{0}^{1} N_{\alpha}(x(s), y(s)) l_{e} d s \quad(\text { for } \alpha=1,2, \\
& =\frac{h_{0} l_{e}}{2 \Delta}[A_{\alpha}+B_{\alpha} \int_{0}^{1} \overbrace{\left[(1-s) x_{1}+s x_{2}\right]} d s+C_{\alpha} \int_{0}^{1}\left[(1-s) y_{1}+s y_{2}\right] d s]
\end{aligned}
$$

So $\int_{\Gamma_{N}^{e}} N_{1} h_{0} d r=\frac{h_{0} l_{l}}{2 \Delta}\left[A_{1}+B_{1}\left(\frac{x_{1}+x_{2}}{2}\right)+C_{1} \frac{\left(y_{1}+y_{2}\right)}{2}\right]$

$$
=\frac{h_{0} l_{e}}{7}\left[11+(-1)\left(\frac{2+5}{2}\right)^{2}+(-2)\left(\frac{1+3}{2}\right)\right]=h_{0} \frac{l_{2}}{2}
$$

$$
\begin{aligned}
\int_{\Gamma_{N}^{e}} N_{2} h_{0} d \Gamma & =\frac{h_{0} l_{e}}{7}\left[A_{2}+B_{2}\left(\frac{x_{1}+x_{2}}{2}\right)+C_{1} \frac{\left(y_{1}+y_{2}\right)}{2}\right] \\
& =\frac{h_{0}}{7}\left[-5+3\left(\frac{2+5}{2}\right)+(-1)\left(\frac{1+3}{2}\right)\right]=h_{0} \frac{l_{12}}{2}
\end{aligned}
$$

$$
\int_{\Gamma_{\kappa}^{e}} N_{3} h_{0} d \Gamma=0 \quad \text { Thus } \quad \underline{f^{e}}=\left[\begin{array}{c}
\Delta / 3 f_{0}+\frac{l_{1}}{2} h_{0} \\
\Delta / 3 f_{0}+\frac{l_{1}}{2} h_{0} \\
\Delta / 3 f_{0}+0
\end{array}\right]
$$

Integrals for "K" stiffness Matrix
Recall,

- Heat Conduction:

$$
\left.\left\lvert\, \begin{array}{rl}
N_{\alpha}(x, y) & =\frac{1}{2 \Delta}\left(A_{\alpha}+B_{\alpha} x+C_{\alpha} y\right) \\
\Rightarrow N_{\alpha, 1} & =\frac{1}{2 \Delta} B_{\alpha} \\
N_{\alpha, 2} & =\frac{1}{2 \Delta} C_{\alpha}
\end{array}\right.\right\} \quad \text { constants. }
$$

$$
\left.\underset{\sim}{B}=\left[\begin{array}{l:l:l}
N_{1,1} & N_{2,1} & N_{3,1} \\
N_{1,2} & N_{2,2} & N_{3,2}
\end{array}\right]\right\} \text { constant }
$$

$\underset{\sim}{k^{e}}=\underbrace{\int_{\Delta} d \Omega}_{\Delta}\left(\frac{1}{2 \Delta}\right)^{2}\left[\begin{array}{ll}B_{1} & C_{1} \\ B_{2} & C_{2} \\ B_{3} & C_{3}\end{array}\right]\left[\begin{array}{ll}k_{11} & k_{12} \\ k_{21} & k_{22}\end{array}\right]\left[\begin{array}{lll}B_{1} & B_{2} & B_{3} \\ C_{1} & C_{2} & C_{3}\end{array}\right]$ if $\underset{\sim}{k}$ is constant within Δ.

- Elasticity:

$$
{\underset{\sim}{K}}^{e}=\int_{\Omega^{e}}{\underset{\sim}{B}}^{\top} \underset{\sim}{D} \underset{\sim}{B} d \Omega
$$

N_{α} :same

Note: $\underset{\sim}{D}$ is the elasticity matrix for Plane stress or Plane strain. (Ch3-pg 2)

$$
\begin{aligned}
& \underset{\sim}{B}=\left[\begin{array}{cc:cc:cc}
N_{1,1} & 0 & N_{2,1} & 0 & N_{3,1} & 0 \\
0 & N_{1,2} & 0 & N_{2,2} & 0 & N_{3,2} \\
N_{1,2} & N_{1,1} & N_{2,2} & N_{2,1} & N_{3,2} & N_{3,1}
\end{array}\right] \\
& \begin{aligned}
K^{e}=\underbrace{\int_{\Delta} d \Omega}_{\Delta}\left(\frac{1}{2 \Delta}\right)^{2}
\end{aligned}\left[\begin{array}{ccc}
B_{1} & 0 & C_{1} \\
0 & C_{1} & B_{1} \\
\hdashline B_{2} & 0 & C_{2} \\
0 & C_{2} & B_{2} \\
\hdashline B_{3} & 0 & C_{3} \\
0 & C_{3} & B_{3}
\end{array}\right]\left[\begin{array}{ll:l:ll}
D \\
\sim
\end{array}\right]\left[\begin{array}{ll:llll}
B_{1} & 0 & B_{2} & 0 & B_{3} & 0 \\
0 & C_{1} & 0 & C_{2} & 0 & C_{3} \\
C_{1} & B_{1} & C_{2} & B_{2} & C_{3} & B_{3}
\end{array}\right]
\end{aligned}
$$

Outline of Steps for Complete Problem Solution

(i) Strong Form (Governing Differential Equations)

- Heat Conduction
$\left\{\begin{array}{ll}\text { \{unknown: } \theta(x, y)\} & d w \underline{q}=f \\ \underline{q} & =-\underset{\sim}{k} \nabla \theta\end{array}\right]$ on Ω
$\left.\theta=\theta_{0}\right]$ on Γ_{D}
$\underline{q} \cdot \underline{n}=h]$ on r_{N}

- 2D Elasticity

$$
\begin{aligned}
& \begin{aligned}
\underline{u} & \left.=\underline{u}_{0}\right] \text { on } \Gamma_{D} \\
\underset{\sim}{\sigma} \underline{n} & \left.=\underline{t}_{N}\right] \text { on } \Gamma_{N}
\end{aligned}
\end{aligned}
$$

(ii) Weak form: Method of weighted residuals + Integration by pants:

- Heat Conduction

$$
G(\theta, \bar{\theta})=-\int_{\Omega}(\nabla \bar{\theta}) \cdot \underset{\sim}{\kappa}(\nabla \theta) d \Omega+\int_{\Omega} \bar{\theta} f d \Omega+\int_{\Gamma} \bar{\theta} h d \Gamma
$$

- 2D Elasticity

$$
\begin{aligned}
G(\underline{u}, \bar{u}) & =-\int_{\Omega} \underbrace{\underset{\sim}{\epsilon}}_{\underset{\sim}{\bar{\epsilon}} \cdot\left(V_{0 \text { oight }}^{C} \underset{\sim}{\epsilon}\right)} d \Omega+\int_{\Omega} \underline{\bar{u}} \cdot \underline{b} d \Omega+\int_{\Gamma_{N}} \underline{\bar{u}} \cdot \underline{t}_{N} d \Gamma \\
& =-\int_{\Omega}^{\overbrace{\bar{\epsilon}^{\top}}^{D} \underline{\sim}} d \Omega+\int_{\Omega} \underline{\bar{u}}^{\top} \underline{b} d \Omega+\int_{\Gamma_{N}} \underline{\bar{u}}^{\top} \underline{t}_{N} d \Gamma
\end{aligned}
$$

(iii) Discretization:-

$$
\int_{\Omega}(\cdot) d \Omega=\sum_{e=1}^{M} \int_{\Omega^{e}}(\cdot) d \Omega \quad ; \quad \int_{\Gamma}(\cdot) d \Gamma=\sum_{e=1}^{M} \int_{\Gamma_{N}^{e}}(\cdot) d \Gamma
$$

(iv) Finite element Approximation:

- Heat Conduction:

$$
\begin{aligned}
& \underline{\nabla} \theta_{e}(x) \approx \nabla \theta_{e}^{h}(x)=\underset{\sim}{\beta} \underline{\sim} \underset{\sim}{d}=\left[\begin{array}{ccc}
N_{1,1}^{e} & N_{2,1}^{e} & N_{3,1}^{e} \\
N_{1,2}^{e} & N_{2,2}^{e} & N_{3,2}^{e} \\
N_{2}^{e}
\end{array}\right]\left[\begin{array}{c}
d_{1}^{e} \\
d_{2}^{e} \\
d_{3}^{e}
\end{array}\right]
\end{aligned}
$$

- 2D Elasticity:

$$
\begin{aligned}
& \underline{u}_{e}(x) \approx u_{e}^{h}(x)=\underset{\sim}{\mathbb{N}} \underset{\sim}{d}=\left[\begin{array}{cc:c:c:cc}
N_{1}^{e} & 0 & N_{2}^{e} & 0 & N_{e}^{e} & 0 \\
0 & N_{1}^{e} & 0 & N_{2}^{e} & 0 & N_{3}^{e}
\end{array}\right] \\
& \epsilon_{e}(x) \approx{\underset{E}{d}}_{h}^{e}(x)=\underset{\sim}{B} \underset{d}{d}
\end{aligned}
$$

(v) Calculate Element Matrices \& Vectors for all elements.

- Heat Conduction:

$$
\underset{(3 \times 3)}{K_{\sim}^{e}}=\int_{\Omega^{e}} \underset{\sim}{B^{\top}} \underset{\sim}{K} \underset{\sim}{B} d \Omega \quad \underset{(3 \times 1)}{f^{e}}=\int_{\Omega^{e}} N^{\top} f d \Omega+\int_{\Gamma_{N}^{e}}^{N_{\sim}^{N}}{ }^{\top} h d r
$$

-2D Elasticity:

$$
\underset{(6 \times 6)}{K_{\tilde{N}}^{e}}=\int_{\Omega^{e}}{\underset{\sim}{B}}^{\top} \underset{\sim}{D} \underset{\sim}{B} d \Omega \quad \underset{(6 \times 1)}{f^{e}}=\int_{\Omega^{e}}{\underset{\sim}{N}}^{\top} \underline{b} d \Omega+\int_{\Gamma_{N}^{e}}{\underset{N}{N}}^{\top} \underline{t}_{N} d \Gamma
$$

(vi) Assemble

$$
\begin{gathered}
\text { Assemble }{\underset{\sim}{k}}^{G}={\underset{e}{e=1}}_{M}^{k_{\sim}^{e}} ; \quad \underline{f}^{G}={\underset{e}{e=1}}_{M}^{f^{e}} \\
\Rightarrow G(\cdot, \cdot) \approx \widetilde{G}^{h}(\underline{d}, \underline{d})=-\underline{d}^{T}\left({\underset{\sim}{k}}^{G} \underline{d}^{G}-\underline{f}^{G}\right)=0 \quad \forall \bar{d}
\end{gathered}
$$

(vii) Solve, enforcing Boundany Conditions:

$$
\left[\begin{array}{cc}
K_{f f} & K_{f s} \\
K_{s f} & K_{s s}
\end{array}\right]\left\{\begin{array}{l}
? \\
d_{f} \\
d_{s}
\end{array}\right\}=\left\{\begin{array}{c}
v_{s} \\
f_{f} \\
\frac{f_{s}}{?}
\end{array}\right\}
$$

(viii) Post computation (Plot)

- Temperature Value at all nodes and temperature field over all elements (MATLAB: patch ())
- Displaced shape using new locations
and stress distribution over all elements (MATAB: patch())
Note:
For Δ element, derivatives are constant over the entire element.
Thus
Strain: $\underline{G}(x, y)=$ constant $=\underset{\sim}{B} \underline{d}$
Stress: $\underline{\sigma}(x, y)=$ constant $=\underset{\sim}{\mathcal{E}} \underset{\sim}{\underline{d}}=\underset{\sim}{D} \underset{\sim}{\mathbb{d}}$
For this reason, the 3 -node triangle is also called CST element. CST: Constant Stress/strain Triangle.

We can also "average" the stresses/Strains at a node from neighboring elements.

Q4 element : 4-node Quadrilateral
In the discretization step, one can also choose quadrilaterals. The quadrilaterals can le general:

However, Lets first consider pure rectangles: The finite element approximation can he obtained by multiplying the 1-D shape functions in " x " and " y ".

$$
\begin{aligned}
& \tilde{N}_{1}(x)=\frac{x-x_{2}}{x_{1}-x_{2}} \\
& \tilde{N}_{2}(x)=\frac{x-x_{1}}{x_{2}-x_{1}} \\
& \tilde{N}_{1}(y)=\frac{y-y_{2}}{y_{1}-y_{2}} \\
& \tilde{N}_{2}(y)=\frac{y-y_{1}}{y_{2}-y_{1}}
\end{aligned}
$$

The two dimensional shape functions look like:

(1)

Note:

- These shape functions are not linear.

$$
N_{\alpha}(x, y)=a_{0}+a_{1}(x)+a_{2}(y)+a_{3}(x y)
$$

Using these shape functions, the unknown variable can be approximated as usual:

- Heat conduction

$$
\begin{aligned}
\theta_{e}(x, y) \approx \theta_{e}^{h}(x) & =N \underline{N} \\
& =\left[\begin{array}{llll}
N_{1} & N_{2} & N_{3} & N_{4}
\end{array}\right]\left[\begin{array}{l}
d_{1}^{e} \\
d_{2}^{e} \\
d_{3}^{e} \\
d_{4}^{e}
\end{array}\right] \\
\underline{\nabla} \theta_{e}(x, y) \approx \underline{\nabla} \theta_{e}^{h}(x)=\underset{\sim}{B} \underline{d} \underset{\sim}{B} & =\left[\begin{array}{llll}
N_{1,1} & N_{2,1} & N_{3,1} & N_{4,1} \\
N_{1,2} & N_{2,2} & N_{3,2} & N_{4,2}
\end{array}\right]
\end{aligned}
$$

- 2D Elasticity

$$
\underline{E}_{e}(x, y) \approx \underline{E}_{e}^{h}(x, y)=\underset{\sim}{B} d
$$

Element Integrals

- Heat Conduction
- 2D Elasticity

Note: The derivatives of $N_{\alpha}(x, y)$ will not be constant.
These element integrals are generally evaluated numerically.
Finally assemble and solve as usual.

$$
{\underset{\sim}{k}}^{G}={\underset{\sim}{e}=1}_{M}^{k_{\sim}^{e}} ; \underline{f}^{G}={\underset{\sim}{e}=1}_{M}^{f^{e}} \quad \Rightarrow \quad \underline{d}^{T}\left(k_{\sim}^{G} \underline{d}-\underline{f}\right)=0 \quad \forall \underline{d}
$$

$$
\begin{aligned}
& \underline{u}_{e}(x, y) \approx \underline{u}_{e}^{h}(x, y)=\underset{\sim}{N} \underline{d} \\
& =\left[\begin{array}{ll:l:ll:l}
N_{1} & & N_{2} & & N_{3} & \\
& N_{1} & & N_{2} & & N_{4} \\
& & & N_{4}
\end{array}\right] \\
& {\left[\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x y}
\end{array}\right]=\left[\begin{array}{ll:l:l:ll}
N_{1,1} & & N_{2,1} & & N_{3,1} & \\
& N_{1,2} & & N_{2,2} & & N_{3,2} \\
N_{1,2} & N_{1,1} & N_{2,2} & N_{2,1} & N_{3,2} & N_{3,1}
\end{array} N_{4,2} \quad N_{4,1}\right]\left[\begin{array}{l}
N_{4,2} \\
d_{8}
\end{array}\right]} \\
& {\left[\begin{array}{l}
{\left[\begin{array}{l}
d_{1}^{e} \\
d_{2}^{e} \\
d_{3}^{e} \\
d_{4}^{e} \\
d_{5}^{e} \\
d_{6}^{e} \\
d_{7}^{e} \\
d_{8}
\end{array}\right]} \\
\underline{d}
\end{array}\right.}
\end{aligned}
$$

Heat Conduction: $\left.\quad \begin{array}{rl}\operatorname{dir} \underline{q} & =f_{0} \\ \underline{q} & =-\underset{\sim}{k}(\nabla \theta)\end{array}\right]$ in $\Omega \quad$ (square)
(say $\underset{\sim}{k}=\frac{I}{\sim}$)

$$
\Rightarrow \quad \operatorname{div}(\nabla \theta)+f_{0}=0
$$

$$
\Rightarrow \nabla^{2} \theta+f_{1}=0 \quad \text { (Poisson Equation) }
$$

$$
\nabla^{2} \theta \equiv \frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}} \quad \text { (Laplacian) }
$$

$$
\begin{aligned}
& B C: \quad \theta=0 \text { on } \Gamma_{D} \\
& \Gamma_{N}=\phi
\end{aligned}
$$

Note: Symmetry of the problem allows us to reduce the problem domain to $\frac{1}{8}$ of the original size.
Symmetry Conditions: Problem domain,

$$
\begin{aligned}
& \text { + Voundany conditions, } \\
& \text { + Loads }
\end{aligned}
$$

New problem:

$$
\nabla^{2} \theta+f_{0}=0 \quad \text { in }(\Omega / 8)
$$

Boundary conditions:

$$
\begin{array}{r}
\theta=0 \\
\frac{\partial \theta}{\partial y}=0 \\
\frac{\partial \theta}{\partial \underline{n}}=0
\end{array} \begin{aligned}
\text { on ed edge } & \text { on edge } 1-5-6-4 \\
& 1-3-6
\end{aligned}
$$

Note:

$$
h=\underline{q} \cdot \underline{n}=-\underset{\sim}{\kappa} \underbrace{(\nabla \theta) \cdot \underline{n}}_{\frac{\partial \theta}{\partial \underline{n}}}=-\left[\begin{array}{ll}
\frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y}
\end{array}\right] \cdot\left[\begin{array}{l}
n_{x} \\
n_{y}
\end{array}\right]
$$

For edge 1-2-4: $\left\{\begin{array}{l}n_{x} \\ n_{y}\end{array}\right\}=\left\{\begin{array}{c}0 \\ -1\end{array}\right\} \Rightarrow \frac{\partial \theta}{\partial y}=h=0$

$$
\text { For edge 1-3-6: }\left\{\begin{array}{l}
n_{x} \\
n_{y}
\end{array}\right\}=\left\{\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right\} \Rightarrow \frac{1}{\sqrt{2}}\left(-\frac{\partial \theta}{\partial x}+\frac{\partial \theta}{\partial y}\right)=h=0
$$

Recall: Weak form:

$$
G(\theta, \bar{\theta})=\int_{\Omega}(\underline{\nabla} \bar{\theta}) \underset{\sim}{\underset{\sim}{x}}(\nabla \underline{\theta}) d \Omega-\int_{\Omega} \bar{\theta} f d \Omega-\int_{\Gamma_{N}} \bar{\theta} h d \Gamma
$$

Discretized \& Approximated (Galerkin) form:

- For each element : $\quad \theta_{e}^{h}(x, y)=\underset{\sim}{\sim} \underline{d}$

For the present problem $a=b=A / 2=1 / 2$

$$
\begin{aligned}
& \underset{\sim}{\underset{\sim}{k}}=\underset{\sim}{I} \\
& \Rightarrow \underset{\sim}{\underset{\sim}{\underset{~ e l ~}{~}}=\frac{1}{2 a b}}\left[\begin{array}{ccc}
b^{2} & -b^{2} & 0 \\
-b^{2} & a^{2}+b^{2} & -a^{2} \\
& -a^{2} & a^{2}
\end{array}\right]
\end{aligned}
$$

$$
\underline{f}^{e l}=\frac{f_{0} a b}{6}\left\{\begin{array}{l}
1 \\
1 \\
1
\end{array}\right\}
$$

$$
\underset{\sim}{K^{e l}}=\frac{1}{2}\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right] ; \quad \underline{f}^{e l}=\frac{f_{0}}{24}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad e l=1,2,3,4 .
$$

Assembly:

Boundary Conditions

Post computation:
$\begin{aligned} & \text { - Computation: } \\ & \begin{array}{c}\text { Heat flux on } \\ \text { (reactions) }\end{array}\end{aligned}\left\{\begin{array}{l}Q_{D} \\ Q_{5} \\ Q_{6}\end{array}\right\}=-\left\{\begin{array}{c}1 / 24 \\ 1 / 8 \\ 1 / 24\end{array}\right\}+\left[\begin{array}{c}\left.K_{s}^{G}\right]\end{array}\right\}\left\{\underline{d}_{f}^{G}\right\}=\left\{\begin{array}{c}-0.1979 \\ -0.3021 \\ -0.0417\end{array}\right\}$

- Temperature gradient in each element $(\nabla \underline{\theta})_{e}=\underset{\sim}{B^{e}} \underline{d}^{e}$ (Strains /Stresses)

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{c|c}
\underset{\sim}{K_{f f}^{G}} & \underset{\sim}{K_{f}^{G}} \\
\hline \underset{\sim}{K_{s f}^{G}} & \underset{\sim}{K_{s s}^{G}}
\end{array}\right]\left[\begin{array}{c}
\left(d_{f}^{G}\right. \\
\underline{d}_{s}^{G} \\
d_{s}
\end{array}\right]=\left[\begin{array}{c}
\left(f_{f}^{G}\right. \\
\underline{f} \\
f_{s}^{G} \\
\underline{d}_{s}
\end{array}\right] \Rightarrow\left[K_{f f}^{G}\right]\left\{d_{f}^{G}\right\}=\left\{f_{f}^{G}\right\} \\
& \Rightarrow\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 0 \\
-1 / 2 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]\left\{\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right\}=\left\{\begin{array}{c}
1 / 24 \\
1 / 8 \\
1 / 8
\end{array}\right\} \Rightarrow \underline{d}_{f}^{G}=\left\{\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right\}=\left\{\begin{array}{l}
0.3125 \\
0.2292 \\
0.1771
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \underline{\theta}_{e}^{h}(x, y)=\underset{\sim}{B} \underline{d}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \underline{G}^{h}(\underline{d}, \underline{d})=\underline{d}^{G^{T}}\left(\underset{\sim}{k^{G}} \underline{d}^{G}-f^{G}\right)=0 \text { for } \forall \underline{\underline{d}}^{G}
\end{aligned}
$$

We can only use $1 / 4$ symmetiny in this case.

- Same weak form.
- Discretization \& Approximation

$$
\begin{aligned}
& \theta_{e}^{h}(x, y)=\underset{\sim}{\underset{\sim}{d}} \underline{d}=\left[\begin{array}{llll}
N_{1} & N_{2} & N_{3} & N_{4}
\end{array}\right] \underline{d} \\
& \nabla \theta_{e}^{h}(x, y)=\underset{\sim}{d} \underline{d}=\left[\begin{array}{llll}
N_{1,1} & N_{2,1} & N_{3,1} & N_{4,1} \\
N_{1,2} & N_{2,2} & N_{3,2} & N_{4,2}
\end{array}\right] \underline{d}
\end{aligned}
$$

For a rectangular element of sides " a " \& " b "

$$
N_{1}(x, y)=\tilde{N}_{1}(x) * \tilde{N}_{1}(y)=\frac{(x-a)(y-b)}{a b}
$$

$$
N_{2}(x, y)=\tilde{N}_{2}(x) * \tilde{N}(y)=\frac{x(y-b)}{(-a b)}
$$

$$
N_{3}(x, y)=\tilde{N}_{2}(x) * \tilde{N}_{2}(y)=\frac{x y}{a b}
$$

$$
N_{4}(x, y)=\widetilde{N}_{1}(x) * \tilde{N}_{2}(y)=\frac{(x-a) y}{(-a b)}
$$

$$
N_{1,1}=\frac{(y-b)}{a b} ; \quad N_{2,1}=\frac{(y-b)}{(-a b)} ; \quad N_{3,1}=\frac{y}{a b} ; \quad N_{4,1}=\frac{y}{(-a b)}
$$

$$
N_{1 / 2}=\frac{(x-a)}{a b} ; \quad N_{2,2}=\frac{x}{(-a b)} ; \quad N_{3,2}=\frac{x}{a b} ; \quad N_{4,2}=\frac{(x-a)}{(-a b)}
$$

$$
\underset{\sim}{B}=\left[\begin{array}{llll}
N_{1,1} & N_{2,1} & N_{3,1} & N_{4,1} \\
N_{1,2} & N_{2,2} & N_{3,2} & N_{4,2}
\end{array}\right]
$$

$$
\underline{f}^{e l}=\int_{V_{0}}{\underset{\sim}{N}}^{\top} f_{0} d \square+\int_{\square} \underset{\sim}{N_{0}^{\top}} \underset{0}{ } / d l=\frac{f_{0}}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Global system of equations:

Post computation

$$
{\underset{\sim}{k}}^{q} \frac{d^{q}}{a v 1}=\underline{f}^{q}
$$

- Heat fluxes on Γ_{D} (reactions)
- Temperature gradients in Ω (strains/stresses)

2D Plane Stress Problem
Strong form (GDE):
Boundary Conditions:
$\operatorname{div} \underset{\sim}{\sigma}+\underline{b}=\underline{0}$ in Ω

$$
\begin{aligned}
& u_{2}=0 \text { on } r_{D_{1}} \\
& u_{1}=0 \text { on } \Gamma_{D_{2}}
\end{aligned}
$$

ie.

$$
\begin{aligned}
& t_{N}=\left\{\begin{array}{l}
0 \\
t
\end{array}\right\} \text { on } \Gamma_{N_{1}} \\
& \underline{t}_{N}=\left\{\begin{array}{l}
t \\
0
\end{array}\right\} \text { on } \Gamma_{N_{2}}
\end{aligned}
$$

Symmetry reduces the problem to $1 / 2$ Using four 3 -rode (CST) Triangular elements:

$$
\begin{aligned}
& \underline{u}(x, y)=\left\{\begin{array}{l}
u_{1}(x, y) \\
u_{2}(x, y)
\end{array}\right\}=\underset{\sim}{\sim} \underset{\sim}{d} \\
& \begin{array}{l}
=\left[\begin{array}{llllll}
N_{1} & & N_{2} & & & N_{3} \\
& N_{1} & N_{2} & N_{3}
\end{array}\right]\left[\begin{array}{c}
d_{1}^{e} \\
d_{2}^{e} \\
\hdashline \\
\hdashline d \\
d_{3}^{e-} \\
d_{3}^{e} \\
d_{4}^{e} \\
\hdashline d_{5}^{e-} \\
d_{6}^{e}
\end{array}\right]
\end{array} \\
& \underline{\epsilon}(x, y)=\left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
\epsilon_{x y}
\end{array}\right\}=\underset{\sim}{B} \underline{d} \\
& {\underset{\sim}{K}}^{e l}=\int_{\mathbb{N}}{\underset{\sim}{B}}^{\top} \underset{\sim}{D} \underset{\sim}{B} d \Delta \quad ; \quad f^{l}=\int_{\Delta}{\underset{\sim}{N}}^{\top} \underline{b} d \Delta+\int_{\Delta}^{N_{N}^{\top} \underline{t}_{N} d l} \\
& {\underset{\sim}{k}}^{G}={\underset{\sim}{e}=1}_{M}^{\sim}{\underset{\sim}{e l}}^{e l} ; \quad f^{G}={\underset{\sim}{e=1}}_{M}^{f^{d}}
\end{aligned}
$$

Enforcing Boundary conditions on an indined support:

Transform specific dogs:

Note:

$$
\left\{\begin{array}{l}
d_{5}^{\prime} \\
d_{6}^{\prime}
\end{array}\right\}=\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]\left\{\begin{array}{l}
d_{5} \\
d_{6}
\end{array}\right\}
$$

Now Enforce BCD \& solve.

Data structure

("Struck" in MATLAB)
Materials array

- nodloads \rightarrow

Overall Code Flow:
(1) Input
(2) Loop over elements

- Obtain ${\underset{\sim}{k}}^{e l}, f^{e l}$
(3) Assemble in $\underset{\sim}{K^{G}}, \underline{f}^{G}$
(4) Enforce BCD (doffree, dofepec)
(5) Solve for $\left\{\underline{d}_{f}^{G}\right\} ;\left\{\underline{f}_{s}^{G}\right\}$
(6) Plot Results
- Displacements
- Stresses (for all elements)
 (Unaveraged/Averaged)

General Q4 Element

$$
\hat{N}_{1}(\xi, \eta)=\frac{(\xi-1)(\eta-1)}{(-1-1)(-1-1)}
$$

$$
\hat{N}_{2}(\xi, n)=\frac{(\xi+1)(\eta-1)}{(1+1)(-1-1)}
$$

$$
\hat{N}_{4}(\xi, \eta)=\frac{(\xi-1)(\eta+1)}{(-1-1)(1+1)}
$$

In general,

$$
\hat{N}_{\alpha}(\xi, \eta)=\frac{1}{4}\left(1+\xi_{\alpha} \xi\right)\left(1+\eta_{\alpha} \eta\right)=N_{\alpha}(x, y)
$$

Choose:

$$
\underline{x}(\underline{\xi})=\sum_{\alpha=1}^{4} \hat{N}_{\alpha}(\underline{\xi}) \underline{x}_{\alpha}
$$

$$
\hat{N}_{3}(\xi, \eta)=\frac{(\xi+1)(\eta+1)}{(1+1)(1+1)}
$$

ie $\underline{x}=\hat{N}_{\alpha} \underline{x}_{\alpha}$

$$
\begin{aligned}
& \text { ie } \underline{x}=\tilde{N}_{\alpha} \underline{x}_{\alpha} \\
& \left\{\begin{array}{l}
x(\xi, \eta) \\
y(\xi, \eta)
\end{array}\right\}=\left[\begin{array}{ll:l:ll}
\hat{N}_{1} & & \hat{N}_{2} & & \hat{N}_{3} \\
& \hat{N}_{1} & \hat{N}_{2} & \hat{N}_{4} & \\
& & \hat{N}_{4}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
y_{1} \\
\hdashline x_{2} \\
y_{2} \\
\hdashline x_{3} \\
y_{3} \\
\hdashline x_{4} \\
y_{4}
\end{array}\right]
\end{aligned}
$$

where $\left(\xi_{\alpha}, n_{\alpha}\right)$ are coordinates $(\pm 1, \pm 1)$

Mapped Q4 finite element formulation
FE Approximation:

- Heat conduction

$$
\underline{x}=\hat{N}(\underline{\xi}) \underline{x}_{\alpha}^{e}
$$

$\begin{array}{ll}\text { - Heat Conduction : }(\nabla \underline{\theta})=\underset{\sim}{B} & \underline{d}^{e}=\left[\begin{array}{llll}N_{1,1} & N_{2,1} & N_{3,1} & N_{4,1} \\ N_{1,2} & N_{2,2} & N_{3,2} & N_{4,2}\end{array}\right] \underline{d}^{e} \\ \text { - Elasticity: } & =B d^{e}\end{array}$

- Elasticity: $\underline{\epsilon}=\underline{\sim} \underline{d}^{e}=\left[\begin{array}{ll:l:ll:l}N_{1,1} & & N_{2,1} & N_{3,1} & N_{4,1} \\ & N_{1,2} & N_{2,2} & & N_{3,2} & N_{4,2} \\ N_{1,2} & N_{1,1} & N_{2,2} & N_{2,1} & N_{3,2} & N_{3,1}\end{array} N_{4,2} N_{4,1}\right] \underline{d}^{e}$

In both cases $\underset{\sim}{B}$ matrices involve $\frac{\partial N_{\alpha}}{\partial x}(x, y)$ and $\frac{\partial N_{\alpha}}{\partial y}(x, y)$
To calculate $\frac{\partial N_{\alpha}}{\partial x}$ or $\frac{\partial N_{\alpha}}{\partial y}$, use chain rule (not $\frac{\partial \hat{N}_{\alpha}}{\partial \xi}$ or $\left.\frac{\partial \hat{N}_{\alpha}}{\partial \eta}\right)$

$$
\left.\begin{array}{l}
\hat{N}_{\alpha}(\xi, \eta)=N_{\alpha}(x, y) \\
\frac{\partial \hat{N}_{\alpha}}{\partial \xi}=\frac{\partial N_{\alpha}}{\partial x} \cdot \frac{\partial x}{\partial \xi}+\frac{\partial N_{\alpha}}{\partial y} \cdot \frac{\partial y}{\partial \xi} \\
\frac{\partial \hat{N}_{\alpha}}{\partial \eta}=\frac{\partial N_{\alpha}}{\partial x} \frac{\partial x}{\partial \eta}+\frac{\partial N_{\alpha}}{\partial y} \cdot \frac{\partial y}{\partial \eta}
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
\frac{\partial \hat{N}_{\alpha}}{\partial \xi} \\
\frac{\partial \hat{N}_{\alpha}}{\partial \eta}
\end{array}\right\}=\underbrace{\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]}_{J^{\top}}\left\{\begin{array}{l}
\frac{\partial N_{\alpha}}{\partial x} \\
\frac{\partial N_{\alpha}}{\partial y}
\end{array}\right\}
$$

$$
\begin{aligned}
& \theta_{e}^{h}(x, y)=\underset{\sim}{N}(x, y) \underline{d}^{e} \\
& \text { ide. } \theta_{e}^{h}(\underline{x}(\underline{\xi}))=\underset{\sim}{N}(\xi, \eta) \underline{d}^{e} \\
& =\left[\begin{array}{llll}
\hat{N}_{1} & \hat{N}_{2} & \hat{N}_{3} & \hat{N}_{4}
\end{array}\right]\left[\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\theta_{3} \\
\theta_{4}
\end{array}\right] \\
& \text { - Elasticity: } \\
& \underline{u}_{e}^{h}(x, y)=\underset{\sim}{N}(x, y) \underline{d}^{e}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Calculation of Gradients: }
\end{aligned}
$$

Using the iso-parametmic map:

$$
\begin{aligned}
& x=\sum_{\alpha=1}^{4} \hat{N}_{\alpha} x_{\alpha}=\hat{N}_{1} x_{1}+\hat{N}_{2} x_{2}+\hat{N}_{3} x_{3}+\hat{N}_{4} x_{4} \\
& y=\sum_{\alpha=1}^{4} \hat{N}_{\alpha} y_{\alpha}=\hat{N}_{1} y_{1}+\hat{N}_{2} y_{2}+\hat{N}_{3} y_{3}+\hat{N}_{4} y_{4} y_{\uparrow}^{\left(x_{4} y_{4}\right)}\left(x_{2} y_{3}\right)
\end{aligned}
$$

$$
\text { So, } \begin{aligned}
\frac{\partial x}{\partial \xi} & =\sum_{\alpha=1}^{4} \frac{\partial \hat{N}_{\alpha}}{\partial \xi} x_{\alpha} & ; & \frac{\partial x}{\partial \eta}=\sum_{\alpha=1}^{4} \frac{\partial \hat{N}_{\alpha}}{\partial \eta} x_{\alpha} \\
\frac{\partial y}{\partial \xi} & =\sum_{i=1}^{4} \frac{\partial \hat{N}_{\alpha}}{\partial \xi} y_{\alpha} & ; & \frac{\partial y}{\partial \eta}
\end{aligned}
$$

These terms can be arranged in matrix called the Jacobian of the map.

$$
\underset{\sim}{J} \equiv\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta}
\end{array}\right] \Rightarrow\left\{\begin{array}{c}
\frac{\partial N_{\alpha}}{\partial x} \\
\frac{\partial N_{\alpha}}{\partial y}
\end{array}\right\}=\underbrace{\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]^{-1}}_{\left[{\underset{\sim}{\sim}}^{-T}\right]}\left\{\begin{array}{l}
\frac{\partial \hat{N}_{\alpha}}{\partial \xi} \\
\frac{\partial \hat{N}_{\alpha}}{\partial \eta}
\end{array}\right\}
$$

So Finally, to calculate $\frac{\partial N_{\alpha}}{\partial x} \& \frac{\partial N_{\alpha}}{\partial y}$ (at a particular (x, y) or (ξ, n))
(i) Calculate $\left.\begin{array}{rl}\frac{\partial \hat{N}_{\alpha}}{\partial \xi} & =\frac{1}{4} \xi_{\alpha}\left(1+\eta_{\alpha} \eta\right) \\ \frac{\partial \hat{N}_{\alpha}}{\partial \eta} & =\frac{1}{4}(1+\xi a \xi) \eta_{\alpha}\end{array}\right\}$ for $\alpha=1,2,3,4$
(ii) Calculate $\left[\begin{array}{l}J \\ \sim\end{array}\right]$
(iii) Calculate $\left\{\begin{array}{c}N_{\alpha, 1} \\ N_{\alpha, 2}\end{array}\right\}=[J]^{-T}\left\{\begin{array}{c}N_{\alpha,} \\ N_{\alpha, \eta}\end{array}\right\}$

Now we can calculate $\underset{\sim}{B}$ matrices.

Finally, Element Matrices:-

- Heat Conduction
- Elasticity

$$
{\underset{\sim}{K}}^{e l}=\int_{\text {图 }}{\underset{\sim}{B}}^{\top} \underset{\sim}{D} \underset{\sim}{B} d \quad \underline{f}^{e l}=\int_{\sim}^{\sim}{\underset{\sim}{N}}^{\top} \underline{b} d+\int_{\square}^{N_{N}^{\top} \underline{t}_{N} d l}
$$

Assembly:

Solve:

$$
\tilde{G}^{2}(\underline{d}, \underline{d})=-\underline{\bar{d}}^{\top}\left(\underset{\sim}{K^{q}} \underline{d}^{q}-\underline{f}^{q}\right)=0 \quad \forall \underline{\bar{d}}
$$

(with Boundary Conditions).

Numerical Integration
In order to calculate the domain and boundary integrals:

$$
\int_{\text {四 }}(\cdot) d \text { and } \quad \int_{\square}(\cdot) d l
$$

Consider the 1-D integral: $\int_{a}^{b} f(x) d x$

$$
\frac{x(ई)}{\xi(x)}
$$

$$
\begin{aligned}
& x(\xi)=\hat{N}_{1}(\xi) a+\hat{N}_{2}(\xi) b \\
& x(\xi)=\frac{(\xi-1)}{(-2)} a+\frac{(\xi+1)}{2} b
\end{aligned}
$$

Using this" change of variables"; or "iso-parametric transformation""

$$
\frac{d x}{d \xi}=\frac{d \hat{N}_{1}}{d \xi} \cdot a+\frac{d \hat{N}_{2}}{d \xi} b=-\frac{a}{2}+\frac{b}{2} \Rightarrow d x=\underbrace{\frac{2}{(b-a)}}_{J} d \xi
$$

Thus

$$
\int_{a}^{b} f(x) d x=\int_{-1}^{1} \hat{f}(\xi) J d \xi
$$

To evaluate $\int_{-1}^{1} g(\xi) d \xi:$
we can use a variety of different numerical integration schemes or (Quadrature methods)
For example
(i) Trapezoidal Rule

Divide into "N" parts
If equal pants: $\left(\Delta l=\frac{2}{N}\right)$

$$
\begin{array}{r}
\int_{-1}^{1} g(\xi) d \xi \approx \sum_{i=1}^{N} g\left(\xi_{i}\right) \Delta l \quad\left(\text { where } \xi_{i}=-1+\frac{(2 i-1)}{2} \Delta l\right) \\
\text { or } \left.\int_{-1}^{1} g(\xi) d \xi \approx \frac{\Delta l}{2}\left[g(-1)+2 \sum_{j=1}^{N-1} g\left(\xi_{j}\right)+g(1)\right] \quad \text { (where } \xi_{j}=-1+j \Delta l\right)
\end{array}
$$

(ii) Simpson's Rule: - Composite Simpson's Rule

Divide into " N " parts $\left(\Delta l=\frac{2}{N}\right)$ - Overlapping" (" N " must be even.)

For composite Simpson's Rule with equal ports:
$\int_{-1}^{1} g(\xi) d \xi \approx \frac{\Delta l}{3}\left[g(-1)+4 \sum_{i=1}^{N / 2} g\left(\xi_{i}\right)+2 \sum_{j=1}^{N-1} g\left(\xi_{j}\right)+g(1)\right]$

When the quadrature points $\xi_{i}\left(\right.$ or $\left.\S_{j}\right)$ are pre-determined whether in Trapezoidal or Simpson's rule and polynomials are used to "fit" the function values at $g\left(\xi_{i}\right)$ (or $\left.g\left(\xi_{j}\right)\right)$, then these families of methods are called Newton-Cotes formulas.

In general, these formulas are of the type: $\int_{-1}^{1} g(\xi) d \xi \approx \sum_{i=1}^{n} g\left(\xi_{i}\right) \omega_{i}$
(iii) Gauss Quadrature

Instead of predetermining the locations \mathcal{S}_{i}, if we determine them so as to minimize the error in the integral.

The following table (Ref. Z\&T) gives some
 Gassian Quadrature formulas:

Table 5.2 Gaussian quadrature abscissae and weights for $\int_{-1}^{1} f(x) \mathrm{d} x=\sum_{j=1}^{n} f\left(\xi_{j}\right) w_{j}$.

$\pm \xi_{j}$	$n=1$	w_{j}
0	$n=2$	2.000000000000000
$1 / \sqrt{3}$	$n=3$	1.000000000000000
$\sqrt{0.6}$		$5 / 9$
0.000000000000000	$n=4$	0.347854845137454
0.861136311594053		0.652145154862546

Note: An "n" point Gauss Quadrature formula is able to integrate $g(\xi)$ exactly upto " $2 n-1$ " polynomial terms.

Integration of the weak form for Q4 elements
Recall：

$$
\begin{aligned}
& \underset{\sim}{K^{d}}=\int_{\text {奍 }} \underset{\sim}{B} \underset{\sim}{D} \underset{\sim}{B} d \text { 圂 } \\
& \underline{f}^{e l}=\int_{\sim} \underset{\sim}{N_{\sim}} \underset{\sim}{\top} \underline{b} d{\underset{\sim}{N}}^{N^{\top}} \underline{t}_{N} d l
\end{aligned}
$$

－Consider the domain integrals first：

$$
\begin{aligned}
& I_{0}=\int_{0} f(\underline{x}(\underline{\xi})) d \text { 圈 } \\
& =\int_{\hat{y}_{1}}^{\hat{y}_{2}} \int_{\hat{x}_{1}}^{\hat{x}_{2}} f(\underline{x}(\underline{\xi})) d \hat{x} d \hat{y} \\
& =\int_{-1}^{1} \int_{-1}^{1} f(\underline{x}(\underline{\xi})) \underbrace{\left[\frac{d \hat{x}}{d \xi} \cdot \frac{d \hat{y}}{d \eta}\right]} \cdot \underbrace{\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta}
\end{array}\right]}_{\text {ne can show: }}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& I_{-}=\int_{-1}^{1}[\int_{-1}^{1} \underbrace{f(\underline{x}(\xi))| |_{\sim}^{J}(\xi) \mid}_{g(\xi)} d \xi] d \eta \\
& \Rightarrow I^{\approx} \approx \int_{-1}^{1}\left[\sum_{i=1}^{n_{1}} f\left(\underline{x}\left(\xi_{i}, \eta\right)\right)\left|\underset{\sim}{J}\left(\S_{i}, \eta\right)\right| \omega_{i}\right] d \eta \\
& \Rightarrow I_{a} \approx \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} f\left(\underline{x}\left(\xi_{i}, \eta_{j}\right)\right)\left|\underset{\sim}{J}\left(\xi_{i}, \eta_{j}\right)\right| \omega_{i} \omega_{j} \\
& \text { In 3-1 }
\end{aligned}
$$

Note：
－d is an elemental area in CURVILINEAR COORDINATES (\hat{x}, \hat{y})
－It is not $d x d y$（d風 $\neq d x d y$ ）

$$
d=d \hat{x} d \hat{y}
$$

－In general：

－In 1－D $|J|=\frac{d l}{d L}$
In 2－D $|J|=\frac{d a}{d A}$

$$
|\underset{\sim}{J}|=\frac{d v}{d V}
$$

$$
n_{1}=2
$$

$n_{2}=2$
2×2
Gauss

- Now lets look at the boundary integrals

$$
\begin{aligned}
I_{0} & =\int_{\square} f(\underline{x}(\underset{\underline{s}}{\underline{\Sigma}})) d l \\
& =\int_{l-2}(\cdot) d l+\int_{2-3}(\cdot) d l+\int_{3-4}(\cdot) d l+\int_{4-1}(\cdot) d l
\end{aligned}
$$

- For edges 1-2 and 3-4 $(\eta=$ constant $)$

$$
d l=\left[\sqrt{\left(\frac{\partial x}{\partial \xi}\right)^{2}+\left(\frac{\partial y}{\partial \xi}\right)^{2}}\right](d \xi)
$$

- For edges 2-3 and 4-1 $(\xi=$ const)

$$
d l=\left[\sqrt{\left(\frac{\partial x}{\partial \eta}\right)^{2}+\left(\frac{\partial y}{\partial \eta}\right)^{2}}\right]^{2}(d \eta)
$$

Thus

$$
\begin{aligned}
& I_{1-2} \approx \sum_{i=1}^{n_{1}} f\left(\underline{x}\left(\xi_{i},-1\right)\right)\left[\sqrt{\left(\frac{\partial x}{\partial \xi}\right)^{2}+\left(\frac{\partial y}{\partial \xi}\right)^{2}}\right] \omega_{i} \\
& I_{2-3}^{\eta} \approx \sum_{i=1}^{n_{2}} f\left(\underline{x}\left(1, \eta_{i}\right)\right)\left[\sqrt{\left(\frac{\partial x}{\partial \eta}\right)^{2}+\left(\frac{\partial y}{\partial \eta}\right)^{2}}\right] \omega_{i}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& I_{3-4}=\cdots \\
& I_{4-1}=\cdots
\end{aligned}
$$

- $d l=\sqrt{d x^{2}+d y^{2}}$
- In 3-D boundary is "da" This is mapped with the "Piola's Area transformation" (or Nanson's formula)

$$
\begin{aligned}
& d \underline{A}=d \underline{N}_{1} \times d \underline{N}_{2} \quad d \underline{a}=d \underline{n}_{1} \times d \underline{n}_{2} \\
& d \underline{a}=\left(\underset{\sim}{J} d \underline{N}_{1}\right) \times\left({ }_{\sim} \times d \underline{N}_{2}\right) \\
& {\underset{\sim}{J}}^{\top} d \underline{a}=\operatorname{det}|\underset{\sim}{J}| d \underline{A} \\
& \Rightarrow d \underline{a}=\operatorname{det}|\underset{\sim}{J}|{\underset{\sim}{~}}^{-\top} d \underline{A}
\end{aligned}
$$

Finally Element Matrices
－Heat Conduction

$$
\begin{aligned}
& \underline{f}^{d}=\int_{⿹ 勹 ⿰ 丿 丿 刂 土} N^{\top} f d{ }^{\top} \quad \approx \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left[\left(N_{\sim}^{\top} f\right) \mid J \sim\right]_{\left(\Omega_{i}, n_{j}\right)} \omega_{i} \omega_{j} \\
& \left.+\int_{\square}{\underset{\sim}{N}}^{\top} h d \square \quad+\sum_{\text {edges }}\left[\sum_{i=1}^{n}\left[\left(N_{\sim}^{N} h\right)\right](\cdot)^{2}+(\cdot)^{2}\right]-(\xi n) \omega_{i}\right]
\end{aligned}
$$

－2D Elasticity：

$$
\begin{aligned}
& \underline{f}^{d}=\int_{0}{\underset{\sim}{N}}^{\top} \underline{b} d{ }^{2} \quad \approx \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left[\left(N_{\sim}^{\top} \underline{b}\right) \mid J \sim\right]_{\left(\Sigma_{i}, n_{j}\right)} \omega_{i} \omega_{j} \\
& \left.+\int_{\square}{\underset{\sim}{N}}^{\top} \underline{t}_{N} d \square \quad+\sum_{\text {edges }}\left[\sum_{i=1}^{n}\left[\left(\sim_{\sim}^{\top} \underline{t}_{N}\right)\right] \sqrt{(\cdot)^{2}+(\cdot)^{2}}\right](\xi n) \omega_{i}\right]
\end{aligned}
$$

－Assemble：
－Enforce BCs \＆Solve．

$$
\left[\begin{array}{c}
K_{f f}
\end{array}\right]\left\{\underline{-}_{f}\right\}=\left\{\underline{f}_{f}\right\}-\left[{\underset{\sim}{N}}^{K_{f}}\right]\left\{\underline{f}_{s}\right\}
$$

－Post－computation：
－Plot deformed shape
－Calculate stresses in each element at each Gauss Point

Appropriate Order of Quadrature
Recall

$$
\underset{\sim}{K^{e l}}=\left.\int_{\sim}{\underset{\sim}{B}}^{\top} \underset{\sim}{D} \underset{\sim}{B} d \int_{-1}^{1} \int_{-1}^{1}\left(\sim_{\sim}^{\top} \underset{\sim}{D} \underset{\sim}{B}\right)\right|_{(\xi, \eta)} J(\Sigma, \eta) d \xi d \eta
$$

$\left.\approx \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left[\left.\left(\mathcal{N}_{\sim}^{\top} \underset{\sim}{D} \underset{\sim}{B}\right)\right|_{\left(\xi_{i}, \eta_{j}\right)} \mid J_{\tilde{j}}\left(\xi_{i}, \eta_{j}\right)\right]\right] \omega_{i} \omega_{j}$
How many points $\left(\xi_{i}, \eta_{j}\right)$ should we choose?
For Q4 element, (with constant D)

- B matrix is linear in ξ and in η

$1 \times 1 \quad 2 \times 2 \quad 3 \times 3$? (so $B^{\top} D$ will he quadratic in $\{\& \eta$.)
- $|\underset{\sim}{J}(\xi, \eta)|=\operatorname{det}(\underset{\sim}{J})$ is linear in ξ and in η
(so the integrand is cubic in $\S \& \eta$) ie. (.) $\xi^{3} * \eta^{3}$
- Thus order of quadrature required for

Full integration is 2×2. (*)
However, full integration is NOT required for convergence.
The minimum requirement for convergence is that the weak form converge in the limit of mesh refinement.

$$
\text { i.e. } \quad \widetilde{G}^{h}(\underline{d}, \underline{d}) \longrightarrow G(\underline{u}, \underline{\bar{u}}) \quad \text { as } " h^{\prime} \longrightarrow 0
$$

It can be shown that this condition is satisfied if an element is able to reproduce the state of constant stress in the limit as $h \rightarrow 0$.
This requirement forms the basis of "testing" new elements with a test called the "Patch" test.

Note:

- The CST element satisfies this requirement automatically.
- For the general iso-parametnically mapped elements: (Q4 or higher)
The constant stress (strain) requirement is equivalent to having a constant B matrix. Thus if your integration rule can integrate the weak form for a constant B matrix, then convergence will be achieved for the element.

$$
\text { ie. } \tilde{G}^{h}\left(\underline{d}^{q}, \underline{d}^{q}\right)=\underline{d}^{\top}\left[\left[{\underset{A}{A}}_{e=1}^{M}{\underset{\sim}{c}}^{d}\right] \underline{d}^{G}-\underline{f}^{q}\right] \rightarrow G(\underline{u}, \underline{\bar{u}}) \quad \text { as } h \rightarrow 0
$$

If $\underset{\sim}{B}$ is constant within each element then,
ie. All we need to integrate "exactly" is the area of all elements. This specifies the minimum order of Quadrature nequired for Q4 (and higher order) elements.

So,

$$
\int_{\operatorname{ma}} d=\int_{-1}^{1} \int_{-1}^{1}|\underset{\sim}{J}(\xi, \eta)| d \xi d \eta
$$

This integral needs to he evaluated exactly. (Not ${\underset{\sim}{k}}^{e l}$) For Q4 elements, $J(\xi, \eta)$ is linear in ξ and η.
Thus the minimum order quadrature required is
1×1 Gauss ie. $\xi_{i}=0 ; \eta_{j}=0$

$$
\omega_{i}=2 ; \omega_{j}=2
$$

This is called Reduced integration.

$$
\begin{aligned}
& N(\xi, \eta) \rightarrow \text { quadratic: } \S^{2} \eta^{2} \\
& \Rightarrow \underset{\sim}{B}(\xi, \eta) \rightarrow\left\{\begin{array}{lll}
N_{\alpha}, \xi & \rightarrow & \xi \eta^{2} \\
N_{\alpha}, \eta & \rightarrow & \xi^{2} \eta
\end{array}\right.
\end{aligned}
$$

$\left.\begin{array}{ll}\text { Thus } \\ \text { (for constant } \underset{\sim}{B_{\sim}^{1}} \\ \underset{\sim}{D} \\ \underset{\sim}{D}\end{array} \rightarrow \xi^{3} \eta^{3}\right] \quad \begin{aligned} & \text { Full } \\ & 4 \times 4\end{aligned}$
Reduced $2 \times 2 \mathrm{~V}$
Also

Note on "Full" Integration:
Monday, March 08, 2010

- The quadrature rules for "Full" integration, developed in the previous section are approximate. i.e. "Full" integration does not mean that the element integrals are integrated "exactly".
- These rules assume that the distortion due to iso-parametric "mapping from the parent element to the actual element is almost "uniform". ie. $\left|J_{\sim}(\Sigma, \eta)\right| \rightarrow$ constant
- This is ensured, when the sargent element is mapped to a parallelogram.

- In practice, all $F E$ meshes have elements that are distorted. When $|J|$ is non-uniform, the terms in $\underset{\sim}{B}$ matrix cannot he expressed

- In practice, all FE
are distorted. When
terms in $\underset{\sim}{B}$ matrix
as polynomials of ξ, η.

$$
B \rightarrow\left\{\begin{array}{c}
N_{\alpha, x} \\
N_{\alpha, y}
\end{array}\right\} \rightarrow \quad{\underset{\sim}{J}}^{-T}\left\{\begin{array}{c}
\hat{N}_{\alpha, \xi} \\
\hat{N}_{\alpha, \eta}
\end{array}\right\}
$$

- This restriction on iso-parametric distortion places restrictions on actual element quality.

$|\bar{x}| \approx$ uniform
where

$$
{\underset{\sim}{J e r e}}^{-1}=\left[\begin{array}{cc}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta}
\end{array}\right]^{-1}=\frac{1}{\mid J} \left\lvert\,\left[\begin{array}{cc}
\frac{\partial y}{\partial \eta} & -\frac{\partial x}{\partial \eta} \\
-\frac{\partial y}{\partial \xi} & \frac{\partial x}{\partial \xi}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\partial \xi}{\partial x} & \frac{\partial \xi}{\partial y} \\
\frac{\partial \eta}{\partial x} & \frac{\partial \eta}{\partial y}
\end{array}\right] \quad\left(J^{-1}\right)_{I i}=\frac{1}{J_{i I}}\right.
$$

Thus for General Q4 elements:

$$
\begin{aligned}
& {\underset{\sim}{K}}_{K^{e l}}=\int_{-1}^{1} \int_{-1}^{1} \underbrace{B_{\sim}^{\top}}_{\sim} \underset{\sim}{D} \underset{\sim}{B}\left|\frac{J}{J}\right| d \xi d \eta \quad \int_{-1}^{1} \int_{-1}^{1} \frac{0\left(\Sigma^{2}, \eta^{2}\right)}{\mid \sim \sim} d \xi d \eta \\
& \left|\frac{1}{J}\right|^{2}\left[\begin{array}{cc}
\sim \xi & \sim \xi \\
\sim \eta & \sim \eta
\end{array}\right]^{2} \quad \text { Note: }|J| \propto 0(\xi, \eta)
\end{aligned}
$$

The integrand is a Rational function of polynomials. Gauss quadrature cannot integrate Rational functions exactly. (and we don't need to).
Thus, strictly speaking, there is no "Full" integration rule
that integrates the weak form exactly.

Post-Computation
After solving
$\left[K_{\sim}^{G}\right]\left\{\underline{d}^{G}\right\}=\left\{\underline{f}^{G}\right\} \quad$ (with boundary conditions)
we obtain $\left\{\underline{d}^{G}\right\}$: x, y-displacements at each node
Using these $\left\{\underline{d}^{G}\right\}$ we can calculate the element dofs $\left\{\underline{d}^{e}\right\}$ for any element. This process is called restriction. (Reverse of assembly).

- Plotting displacements:

Ideally we should use $\quad \underline{u}(\underline{x})=\underset{\sim}{d^{e}}$ (i.e. the actual shape functions) to calculate \& plot displacements within each element

- Plotting stresses: $\underline{\sigma}=\underset{\sim}{D} \underset{\sim}{B} \underline{d}^{e}$

Note:

- Previously for CST $\triangle \Delta ~ B$ was constant and its computation was not expensive.
- However, for Iso-parametric elements (such as Q4), B matrix in general is not constant and needs to be computed again for plotting stresses.
(This can he quite expensive, so you may choose to store the $\underset{\sim}{B}$ matrix for each element at every Gauss integration point. This would a huge amount of storage, but can turn out to he faster.)

- We could use Reduced Integration (ie. 1×1)

Consequences of Reduced Integration

$$
\left.{\underset{\sim}{K}}^{\text {el }} \approx\left[\left(\mathcal{\sim}_{\sim}^{B_{\sim}^{\top}} \underset{\sim}{D} \underset{\sim}{B}\right)|\underset{\sim}{J}|\right]\right|_{\left(\xi_{i}=0, \eta_{j}=0\right)} \underbrace{\omega_{i} \omega_{j}}
$$

* Less Computation \Rightarrow fast \uparrow

For Q4 elements only 1-Gauss point is used for numerical integration of the weak form.

* Super-convergence of stress \uparrow

It turns out that the "optimal" locations for calculating the stresses in post-computation are the Gauss point locations of 1 -order less than what is required for full integration.
These are called Barlow points.
eg. Q4 : Full integration (2×2)
1 -order less (1×1) ie. Reduced integration.

Stresses obtained using

$$
\underline{\sigma}(x, y)=\underset{\sim}{D} \underset{\sim}{B} \underline{d}^{e}
$$

are vent poor at the nodes.
They are much better at the Barbour points.

Stress averaging should he done using Barlow pts.

Friday, March 05, 2010

* "Softer" (more accurate response) \uparrow

A finite element solution is usually "stiffer" than the actual continuum problem.

If we use full integration to integrate the ${\underset{\sim}{c}}^{e l}$ exactly, then does not help.
If we use reduced integration to approximately under-integrate the $K^{e l}$ on purpose, then the two effects tend to negate each other and we get better results.

* Mesh instabilities occur \downarrow

$$
\underset{\underset{(8 \times 8)}{\mathrm{K}^{e l}}}{\underset{8}{\text { Eigenvectors }}}
$$

Full integration: too-stiff. Reduced integration: too -soft

Figure 6.12-1. Independent displacement modes of a bilinear element. (sometiones even unstable)

Figure 6.12-2. (a) Mesh of four bilinear elements, showing Gauss points of an order 1 rule in each element (squares). (b, c, d) Possible mechanisms ("hourglass" modes).

Computer Implementation of General Q4 element
Given

- Actual co-ordinates $\left(x_{\alpha} y_{\alpha}\right)$

$$
\alpha=1,2,3,4
$$

- Material Properties:
- Heat Conduction $\underset{\sim}{\sim}$
- 2D Elasticity D

- Domain term: - Heat Conduction: Body heat source: f
- 2D Elasticity: Body Force: \underline{b}
- Boundary term: $\left(\Gamma_{N}\right)$ - Heat conduction: Edge heat source: h - $2 D$ Elasticity: Edge Traction: t_{N}

Output:

$$
k_{\sim}^{e l} ; \underline{f}^{e l}
$$

Steps:
(i) Determine integration rule $\left(\xi_{i}, \eta_{j}\right)$ \& $\omega_{i} \omega_{j}$
(ii) Loop over number of integration points $\left(n_{i} * n_{j}\right)$
(a) Calculate

$$
\begin{aligned}
& \left.\hat{N}_{\alpha}\left(\xi_{i}, \eta_{j}\right) \&\left\{\begin{array}{l}
\hat{N}_{\alpha}, \xi \\
\hat{N}_{\alpha, \eta}
\end{array}\right\}\left(\xi_{i}, \eta_{j}\right) \quad \begin{array}{rr}
2 \times 2 \\
(\alpha=1,2,3,4) & \underline{x}=\hat{N} \\
\text { ate } \underline{x}_{\alpha}^{e} \\
\frac{\partial y}{\partial \xi}\left(\xi_{i}, \eta_{j}\right) & \frac{\partial y}{\partial \eta}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\
\sum_{\alpha=1}^{4}\left(\hat{N}_{\alpha, \xi} x_{\alpha}\right) & \sum_{\alpha=1}^{4}\left(\hat{N}_{\alpha, \eta} x_{\alpha}\right) \\
\sum_{\alpha=1}^{4}\left(\hat{N}_{\alpha, \xi} y_{\alpha}\right) & \sum_{\alpha=1}^{4}\left(\hat{N}_{\alpha, \eta} y_{\alpha}\right)
\end{array}\right]
\end{aligned}
$$

(b) Calculate
(c) Calculate $|\underset{\sim}{J}| \&{\underset{\sim}{J}}^{-1}\left(\xi_{i}, \eta_{j}\right)$
(d) Calculate $\left\{\begin{array}{l}N_{\alpha, x} \\ N_{\alpha, y}\end{array}\right\}={\underset{\sim}{J}}^{-T}\left\{\begin{array}{l}\hat{N}_{\alpha, \xi} \\ \hat{N}_{\alpha, \eta}\end{array}\right\} \quad$ at $\left(\sum_{i}, \eta_{j}\right)$
(e) Construct $\underset{\sim}{N}$ matrix $=\left[\begin{array}{l:l:l:l}\hat{N}_{1} & \hat{N}_{2} & \hat{N}_{3} & \hat{N}_{4} \\ & \hat{N}_{1} & \hat{N}_{2} & \\ \hat{N}_{3} & & \hat{N}_{4}\end{array}\right] \quad$ at $\left(\xi_{i} \eta_{j}\right)$ $\underset{\sim}{\underset{\sim}{B} \text { matrix }} \underset{\text { (2 Delasticity) }}{ }=\left[\begin{array}{c:cc:c} & N_{\alpha, x} & 0 & \\ \hdashline \cdots & 0 & N_{\alpha, y} & \cdots \\ & N_{\alpha, y} & N_{\alpha, x}\end{array}\right] \quad$ at $\left(\xi_{i} n_{j}\right)$
(f) Add to Element Matrices:

- $\underset{\underset{(8 \times 8)}{{\underset{\sim}{e l}}^{e l}}=\stackrel{K_{\sim}^{e l}}{\sim}+\left.[\underset{\sim}{\underset{\sim}{B}} \underset{\sim}{D} \underset{\sim}{B}|\underset{\sim}{J}|]\right|_{\left(\xi_{i}, \eta_{j}\right)} \omega_{i} \omega_{j}}{ }$
- $\frac{{\underset{f}{c}}^{e l}}{(8 \times 1)}=\underline{f}^{e l}+\left.\left\{{\underset{\sim}{N}}^{\top} \underline{b} \mid \underset{\sim}{J} /\right\}\right|_{\left(\xi_{i}, \eta_{j}\right)} \omega_{i} \omega_{j}$
(iii) Loop over all boundany ($\Gamma_{N}: 1-2,2-3,3-4,4-1$) (if needed)
(a) Calculate $\hat{N}_{\alpha},\left\{\begin{array}{l}\hat{N}_{\alpha}, \xi \\ \hat{N}_{\alpha, n}\end{array}\right\}_{\alpha=1,2,3,4}$ at $\left(\xi_{i},-1\right)$
(b) Calculate $\left[\begin{array}{c}J \\ \sim\end{array}\right]=\left[\begin{array}{ll}\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta}\end{array}\right]$
(c) Calculate "length factor": $\left|V_{l}\right| \equiv\left[\sqrt{\left(\frac{\partial x}{\partial \xi}\right)^{2}+\left(\frac{\partial y}{\partial \xi}\right)^{2}}\right]$
(d) Construct $\underset{\sim}{N}$ matrix $\div\left[\begin{array}{l:l:l:l}\hat{N}_{1} & \hat{N}_{2} & \hat{N}_{3} & \hat{N}_{4} \\ & \hat{N}_{1} & \hat{N}_{2} & \\ N_{3} & & \hat{N}_{4}\end{array}\right] \quad$ at $\left(\xi_{i},-1\right)$
(e) Add

$$
\frac{f_{(8 \times 1)}^{e l}}{e l} \underline{f}^{e l}+\left\{{\underset{N}{\sim}}^{\top} \underline{t}_{N}\left|J_{l}\right|\right\} \omega_{i}
$$

(iv) Return $\underset{\sim}{\mathrm{K}}$; $\underline{f}^{e l}$

Higher Order Elements: Triangular

- Triangular Elements

Polynomial approximation:
Pascal's Triangle

1

$$
\xrightarrow{x^{4} x^{3} y x^{2} y^{2} x y^{3} y^{4}} \text { T-15 (Quartic) }
$$

(2)

(2)

Shape functions are usually expressed in terms of
Area Coordinates:

$$
\begin{aligned}
& L_{1}=\frac{\text { Area P23 }}{\Delta} \\
& L_{2}=\frac{\text { Area P31 }}{\Delta} \\
& L_{3}=\frac{\text { Area P12 }}{\Delta}
\end{aligned}
$$

Note: $L_{1}+L_{2}+L_{3}=1$

In terms of Area coordinates, one can express shape functions as Lagrange polynomials in each $L_{1} L_{2} L_{3}$:

$$
\xrightarrow[(I, J, K)]{N_{\alpha}\left(L_{1}, L_{2}, L_{3}\right)}=l_{I}^{I}\left(L_{1}\right) * l_{J}^{J}\left(L_{2}\right) * l_{k}^{k}\left(L_{3}\right)
$$

where Lagrange polynomials:

$$
\begin{aligned}
l_{k}^{n}(\xi) & =\frac{\left(\xi-\xi_{0}\right)\left(\xi-\xi_{1}\right) \cdots\left(\xi-\xi_{k-1}\right)\left(\xi-\xi_{k+1}\right) \cdots\left(\xi-\xi_{n}\right)}{\left(\xi_{k}-\xi_{0}\right)\left(\xi_{k}-\xi_{1}\right) \cdots\left(\xi_{k}-\xi_{k-1}\right)\left(\xi_{k}-\xi_{k+1}\right) \cdots\left(\xi_{k}-\xi_{n}\right)}=\prod_{i=0}^{n} \frac{\xi_{1}-\xi_{i}}{\xi_{k}-\xi_{i}} \\
l_{0}^{0}(\xi) & =1
\end{aligned}
$$

Note: $\quad l_{0}^{0}(\Omega)=1$

For example:

- CST (TB):

$$
\begin{aligned}
& N_{1}\left(L_{1}, L_{2}, L_{3}\right)=L_{1} \\
& N_{2}\left(L_{1}, L_{2}, L_{3}\right)=L_{2} \\
& N_{3}\left(L_{1}, L_{2}, L_{3}\right)=L_{3}
\end{aligned}
$$

- CST (TC) :

Comer Nodes:

$$
\begin{aligned}
& \quad N_{1}\left(L_{1}, L_{2}, L_{3}\right)=\frac{\left(L_{1}-1 / 2\right)\left(L_{1}-0\right)}{(1-1 / 2)(1-0)} \cdot 1.1 \\
& \left.\Rightarrow \quad \begin{array}{l}
N_{1}=\left(2 L_{1}-1\right) L_{1} \\
\\
N_{2}=\left(2 L_{2}-1\right) L_{2} \\
\\
N_{3}=\left(2 L_{3}-1\right) L_{3}
\end{array}\right\} \text { Corner }
\end{aligned}
$$

Mid-side Nodes:

$$
\begin{aligned}
& \quad N_{4}\left(L_{1}, L_{2}, L_{3}\right)=\frac{\left(L_{1}-0\right)}{(1 / 2-0)} \underline{(1 / 2-0)} \cdot 1 \\
& \Rightarrow \quad N_{4}=4 L_{1} L_{2} \\
& N_{5}=4 L_{2} L_{3} \\
& N_{6}=4 L_{3} L_{1}
\end{aligned}
$$

l_{0}^{0}

Using these shape functions, one would have to compute the derivatives and element integrals.
The following identities will be helpful:

- $L_{1}+L_{2}+L_{3}=1$

$$
\begin{aligned}
& x=L_{1} x_{1}+L_{2} x_{2}+L_{3} x_{3} \\
& y=L_{1} y_{1}+L_{2} y_{2}+L_{3} y_{3}
\end{aligned}
$$

- $L_{1}=N_{1}=\frac{1}{2 \Delta}\left(A_{1}+B_{1} x+C_{1} y\right)$

$$
\Delta=\frac{1}{2} \operatorname{det}\left|\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right|
$$

For derivatives: $\frac{\partial L_{1}}{\partial x}=\frac{B_{1}}{2 \Delta} ; \quad \frac{\partial L_{1}}{\partial y}=\frac{G_{1}}{2 \Delta}$ Similany $L_{2} \& L_{3}$

- $N_{\alpha}\left(L_{1}, L_{2}, L_{3}\right)=l_{I}^{I}\left(L_{1}\right) * l_{J}^{J}\left(L_{2}\right) * l_{k}^{k}\left(L_{3}\right)$ polynomial order:

$$
\alpha=(I, J, K)
$$

$$
\begin{array}{cc}
1 & 1 \tag{J}\\
2 & 1 \\
(I) & (J)
\end{array}
$$

where $I+J+K=M$

- Derivatives

$$
\left.\begin{array}{l}
\frac{\partial N_{\alpha}}{\partial x}=\frac{\partial N_{\alpha}}{\partial L_{1}} \cdot \frac{\partial L_{1}}{\partial x}+\frac{\partial N_{\alpha}}{\partial L_{2}} \cdot \frac{\partial L_{2}}{\partial x}+\frac{\partial N_{\alpha}}{\partial L_{3}} \cdot \frac{\partial L_{3}}{\partial x} \\
\frac{\partial N_{\alpha}}{\partial y}=\frac{\partial N_{\alpha}}{\partial L_{1}} \frac{\partial L_{1}}{\partial y}+\frac{\partial N_{\alpha}}{\partial L_{2}} \cdot \frac{\partial L_{2}}{\partial y}+\frac{\partial N_{\alpha}}{\partial L_{3}} \cdot \frac{\partial L_{3}}{\partial y}
\end{array}\right\}
$$

can he explicitly obtained for Triangles with straight edges.

- Element Integrals:

$$
{\underset{\sim}{K}}^{e l}=\int_{\Delta}{\underset{\sim}{B}}^{\top} \underset{\sim}{D} \underset{\sim}{B} d \Delta \quad ; \quad \underline{f}^{e l}=\int_{\Delta}{\underset{\sim}{N}}^{\top} \underline{b} d \Delta+\int_{\Delta}^{N_{\sim}^{\top}} \underline{t}_{N} d \Delta
$$

For straight edged triangles, all the quantities will he polynomials of L_{1}, L_{2}, L_{3}.

The following formulas are exact: (for straight edged Δs)

$$
\begin{aligned}
& \int_{\Delta} L_{1}^{i} L_{2}^{j} L_{3}^{k} \cdot d \Delta=\frac{i!j!k!}{(i+j+k+2)!} 2 \Delta \\
& \int_{\Delta(l-2)} L_{1}^{i} L_{2}^{j} d l=\frac{i!j!}{(i+j+1)!}\left(l_{1-2}\right)
\end{aligned}
$$

For triangles with curved edges, the elements have to be mapped to a "parent" triangular element and use numerical integration.
Ref: $\left(\begin{array}{ll}\text { Ready } & \text { § } 9.3 .4 \\ \text { Hughes } & \text { App.3.1 }\end{array}\right)$ for details

$$
\begin{aligned}
& L_{1} \leftrightarrow \gamma \leftrightarrow j \\
& L_{2} \leftrightarrow s \\
& L_{3} \leftrightarrow t=1-\gamma-s
\end{aligned}
$$

For a T6 triangle, given coordinates

$$
\left.\begin{array}{l}
N_{1}=\left(2 L_{1}-1\right) L_{1} \\
N_{2}=\left(2 L_{2}-1\right) L_{2} \\
N_{3}=\left(2 L_{3}-1\right) L_{3}
\end{array}\right\} \text { Corner } \text { Nodes }
$$

$$
\left.\begin{array}{l}
N_{4}=4 L_{1} L_{2} \\
N_{5}=4 L_{2} L_{3} \\
N_{6}=4 L_{3} L_{1}
\end{array}\right\} \quad \begin{aligned}
& \text { Mid-side } \\
& \text { Nodes }
\end{aligned}
$$

where

$$
\begin{aligned}
& L_{1}=N_{1}^{T 3}=\frac{1}{2 \Delta}\left(A_{1}+B_{1} x+C_{1} y\right) \\
& L_{2}=N_{2}^{T 3}=\frac{1}{2 \Delta}\left(A_{2}+B_{2} x+C_{2} y\right) \\
& L_{3}=N_{3}^{T 3}=\frac{1}{2 \Delta}\left(A_{3}+B_{3} x+C_{3} y\right)
\end{aligned}
$$

$$
\begin{aligned}
& N_{\alpha, x}=\sum_{i=1}^{3} \frac{\partial N_{\alpha}}{\partial L_{i}} \frac{\partial L_{i}}{\partial x} \\
& N_{\alpha, y}=\sum_{i=1}^{3} \frac{\partial N_{\alpha}}{\partial L_{i}} \frac{\partial L_{i}}{\partial y}=\frac{B_{i}}{2 \Delta}
\end{aligned}
$$

$$
{\underset{\sim}{N}}_{\alpha \beta}=\int_{\Omega}{\underset{\sim}{\sim}}_{\alpha}^{\top} \underset{\sim}{D}{\underset{\sim}{B}}_{\beta} d \Omega
$$

$$
\underset{2 \times 2}{\underset{\sim}{K}} \underset{\alpha \beta}{ }=\int_{\Omega}\left[\begin{array}{ccc}
N_{\alpha, x} & & N_{\alpha, y} \\
& N_{\alpha, y} & N_{\alpha, x}
\end{array}\right]\left[\begin{array}{ccc}
x & x & x \\
x & x & x \\
\times & x & x
\end{array}\right]\left[\begin{array}{ll}
N_{\beta, x} & \\
& N_{\beta, y} \\
N_{\beta, y} & N_{\beta, x}
\end{array}\right] d \Omega
$$

$\underset{\sim}{K_{\alpha \beta}}=\int_{\Omega}\left[\begin{array}{ll}\bullet & \bullet \\ 0 & \bullet\end{array}\right] d \Omega$ where each term is at most quadratic in $L_{1} L_{2} L_{3}$:

$$
L_{1}^{i} L_{2}^{j} L_{3}^{k} \rightarrow i+j+k \leqslant 2
$$

$$
(\text { say }) \quad(\cdot)=\int_{\Omega}\left(C_{1}+C_{2} L_{1}+C_{3} L_{2}+C_{4} L_{1}^{2}+C_{5} L_{1} L_{2}+C_{6} L_{2}^{2}\right) d \Omega
$$

Q16
QR

Polynomial Approximation :

$$
\begin{aligned}
& N_{1}=\hat{N}_{1}-1 / 2 N_{5}-1 / 2 N_{8} \\
& N_{2}=\hat{N}_{2}-1 / 2 N_{5}-1 / 2 N_{6} \\
& N_{3}=\hat{N}_{3}-1 / 2 N_{6}-1 / 2 N_{7} \\
& N_{4}=\hat{N}_{4}-1 / 2 N_{7}-1 / 2 N_{8}
\end{aligned}
$$

Higher Order Hierarchical Elements
Hierarchical shape functions are generated by retaining the oniginal "Standard" finite element shape functions and simply including more bubble functions.

For example:

- $1-\mathrm{D}$

- 2-D Triangles

TB

$$
+
$$

- 2D Rectangles:

QU
Note:

- The "Base" shape functions guarantee convergence
- Bubbles can he condensed out statically.
- $\sum N_{\alpha}=1$ holds only for the "Base" functions.
- Kronecker delta $\delta_{a b}=\left\{\begin{array}{ll}1 & a=b \\ 0 & a \neq b\end{array}\right\}$ is still maintained

General Q4 elements are simple and convenient to implement, however, they usually give poor result o on coarse meshes in bending dominated problems.

To obtain "good" results with coarse meshes a hierarchical element with 2 non-conforming "bubbles" was developed.

(a)

(b)

Figure 8.3-1. (a) A rectangular bilinear element. (b) The bilinear element deformed by bending moment M_{1}, (c) Correct deformed geometry for pure bending under bending moment M_{2}.

- This Q6 element is not compatile at the element boundaries, so is not in $H^{1}(\Omega)$. Discontinuities (Gaps/Overlaps) may occur.

- This element reproduces the constant strains condition only for rectangular / parallelogram configurations
of the underlying Q4.

- For a general Q6, with non-constant iso-parametric distortion, it fails the constant strain (patch test).
- To "trick" it into passing the patch test:

$$
\underset{\sim}{B} \rightarrow\left\{\begin{array}{c}
\hat{N}_{\beta, 1} \\
\tilde{N}_{\beta, 2}
\end{array}\right\}=\frac{\left|J_{0}\right| J_{0}^{-T}}{\left|J\left(\xi_{\beta, \eta}\right)\right|}\left\{\begin{array}{c}
\hat{N}_{\beta, \Sigma} \\
\tilde{N}_{\beta, \eta}
\end{array}\right\}
$$

- Famous Quote: international journal for numerical methods in engineering, vol. 29, 1595-1638 (1990)

A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES*

'. . two wrongs do make a right in California' g. strange (1973)
‘. . . two rights make a right even in California' r. L. TAylor (1989)
J. C. SUMO ${ }^{+}$AND M. S. RIFAI ${ }^{\text { }}$

Division of Applied Mechanics, Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, U.S.A.

Convergence comprises of two conditions:

$$
\text { Convergence }=\text { Consistency }+ \text { Stability }
$$

(1) Consistency: As $h \rightarrow 0$,

$$
\tilde{G}^{h^{h}}(\underline{d}, \underline{d})=G^{h}\left(\underline{u}^{\omega}, \underline{\underline{u}}^{h}\right) \longrightarrow G(\underline{w}, \underline{\bar{u}})
$$

ie.

Note:

$$
\begin{array}{ll}
G(\underline{u}, \underline{u})=a(\underline{u}, \underline{u})-(f, \underline{\bar{u}})=0 & \forall \quad \underline{\bar{u}} \in H_{0}^{1}(\Omega) \\
G^{h}\left(\underline{u}^{h}, \underline{\bar{u}}^{h}\right)=a^{h}\left(\underline{u}^{h}, \underline{u}^{h}\right)-\left(f, \bar{u}^{h}\right)=0 \quad \forall \quad \underline{u}^{h} \in F E_{0}^{1}(\Omega)
\end{array}
$$

If a method is consistent then $a^{n}\left(\cdot, \underline{u}^{h}\right)=a\left(\cdot, \overline{\underline{u}}^{n}\right)$ within $F E_{0}^{1}(\Omega)$.
So, restricting the space to $F E_{0}^{1}(\Omega)$ and subtracting:

$$
a\left(\underline{u}^{n}-\underline{u}, \underline{\bar{u}}^{h}\right)=0 \quad \forall \quad \underline{u}^{h} \in F E_{0}^{1}(\Omega)
$$

This is called the error equation.
Note:

- "Error" $\underline{e}(\underline{x})=\underline{u}^{h}(\underline{x})-\underline{u}(\underline{x})$
- Thus $a\left(\underline{e}, \underline{u}^{h}\right)=0 \quad \forall \underline{u}^{h} \in F E_{0}^{1}(\Omega)$
ie. error is always "orthogonal" to the $F E$ space.
i.e. FE solution is the best possible solution in $F E_{0}^{1}(\Omega)$.
- However $a(\underline{e}, \underline{u}) \neq 0 \quad \forall \quad \underline{u} \in H_{0}^{1}(\Omega)$

In particular, $a(e, e)$ is called the "energy norm" of the error. (Recall, $\Pi(\underline{u})$ is the energy functional corresponding to $G(\underline{u}, \underline{u})$.)

$$
\pi(\underline{e}) \propto \frac{1}{2} a(\underline{e}, \underline{e})=\frac{1}{2} \int_{\Omega} \underline{\epsilon}(\underline{e})^{\top} D \underline{\sim}(\underline{e}) d \Omega \quad\left\{\begin{array}{l}
\text { strain-energy } \\
\text { of the error }
\end{array}\right\}
$$

It can he shown that

$$
\pi(\underline{e})=\pi\left(\underline{u}^{h}\right)-\pi(\underline{u}) \quad\left\{\begin{array}{l}
\text { Energy of the error } \\
=\text { Error in the energy } y
\end{array}\right\}
$$

It can he shown, that if complete polynomials of order "p" ane used in the FE approximation, then

$$
\pi(\underline{e})=C_{l} h^{2(p+1-m)}
$$

where C_{1} is a constant of proportionality, " h " is the element-size, and " m " is the order of derivatives in the strains (here $m=1$).
Thus for plane strain problems:

$$
\pi(\underline{e})=C_{1} h^{2 p} \quad \text { i.e. } O\left(h^{2 p}\right)
$$

other error measures:

$$
\begin{aligned}
& \|\underline{e}\|=\left\|\underline{u}^{h}-\underline{u}\right\|=c_{2} h^{p+1} \quad \text { ie. } O\left(h^{p+1}\right) \\
& \|\nabla \underline{e}\|=\left\|\underline{\epsilon}^{h}-\underline{\epsilon}\right\|=c_{3} h^{p} \quad \text { ie } O\left(h^{p}\right)
\end{aligned}
$$

In general, a method is said to be consistent of order " q "

$$
\text { if }\|\underline{e}\|=\left\|\underline{u}^{h}-\underline{u}\right\|=c h^{q} \quad \text { with } \quad q>0
$$

eg. Recall

(2) Stability:

This refers to the solvability of the final $F E$ equation.

$$
\underline{d}^{d^{\top}}\left(\underline{K}_{\sim}^{G} \underline{d}^{G}-\underline{f}^{G}\right)=0
$$

$$
k\left(K_{\sim}\right)=\frac{\max (\lambda)}{\min (\lambda)}
$$

If ${\underset{\sim}{k}}^{G}$ (after $B C \Delta$) has zero (or dose to zero) eigen-values, then this means that there are zero-energy modes and the computed solution may have large errors. (e.g. hourglass modes in Q4 with reduced integration).

Stabilized Methods

- Ad-noc stabilization: ${\underset{\sim}{\hat{K}}}^{G}={\underset{\sim}{K}}^{G}+\alpha \underset{\sim}{I} \quad$ (not consistent)
- Robust stabilization methods require "functional analysis".

Recall, the criteria for convergence of a finite element formulation:

- Continuity / Compatibility.

The shape-functions must be square-integrable: $H^{1}(\Omega)$

- Completeness

Shape functions must be complete upto polynomial order " m " (m th derivatives).
In 2D elasticity, $m=1$, so atheast linear polynomials are required ie. $\{1, x, y\}$.
In addition we use the "patch test" to ensure convergence. of a new element:
i.e. $\quad \tilde{G}^{h}(\underline{d}, \bar{d}) \rightarrow G(\underline{u}, \underline{\underline{u}}) \quad$ as $\quad h \rightarrow 0$

It can le shown that this condition is met if the element can reproduce a state of constant strain imposed on it.
The Patch test checks this ability of an element.
Note:

- The elements we have discussed already pass the patch test.
- This test is used for "new" elements / shape functions.

Idea:

- Consider a domain with an arbitrary patch of the "new" elements
- Apply a state of constant stress and see the stresses

within each element are constant also.
- The exact solution may we

$$
\begin{aligned}
\underline{u}(x, y)=\left\{\begin{array}{l}
u_{x} \\
u_{y}
\end{array}\right\}=\left\{\begin{array}{l}
a_{1}+b_{1} x+c_{1} y \\
a_{2}+b_{2} x+c_{2} y
\end{array}\right\} & \circledast \\
\Rightarrow \quad \underline{\epsilon}(x, y) & =\left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x y}
\end{array}\right\}=\left\{\begin{array}{l}
b_{1} \\
c_{2} \\
c_{1}+b_{2}
\end{array}\right\} \quad \leftarrow \text { constant }
\end{aligned}
$$

-Calculate the "nodal" displacements at the boundary from $*$ and solve a pure "voundany" problem.

- Verify that the exact solution is produced as dose as possible to the numerical precision of the computer.
For details, refer $Z \& T(C, 9): 3$ types patch tests.

The same process can be generalized to 3D.

GIE: $\quad \operatorname{dir} \underset{\sim}{\sigma}+\underline{b}=\underline{0}$ over Ω
$B C$:

$$
\begin{aligned}
\underset{\sim}{\sigma} & =\underline{t}_{N} & \text { on } \Gamma_{N} \\
\underline{u} & =\underline{u}_{0} & \text { on } \Gamma_{D}
\end{aligned}
$$

Strain-displacement

$$
\underset{\sim}{\epsilon}=\frac{1}{2}(\nabla \underline{u}+\nabla \underset{\sim}{u})
$$

Material:

$$
\underset{\sim}{\sigma}(\underset{\sim}{\epsilon})=\lambda \operatorname{tr}(\underset{\sim}{\epsilon}) \underset{\sim}{I}+2 \mu \underset{\sim}{\epsilon}
$$

(or equivalently) $\underset{\sim}{\sigma}=\underset{\sim}{\underset{\sim}{C}} \underset{\sim}{\epsilon}$

Weak form:

$$
G(\underline{u}, \underline{u})=\int_{\Omega} \underline{\underline{u}} \cdot(\operatorname{div} \underset{\sim}{\sigma}+\underline{b}) d \Omega=0 \quad \forall \bar{u} \in H_{0}^{1}(\Omega)
$$

Integration by parts (using Divergence theorem):

$$
\Gamma=\Gamma_{D} \cup r_{N} \text { and } \underline{\underline{u}}=0 \text { on } \Gamma_{D} \quad \text { and } \quad\left(\underline{\sigma}^{\top} \underline{\bar{u}}\right) \cdot \underline{n}=\left(\sigma_{\sim} \underline{n}\right) \cdot \underline{\bar{u}}=\underline{\bar{u}} \cdot \underline{t}_{N}
$$

$$
\Rightarrow \quad G(\underline{u}, \bar{u})=-\int_{\Omega} \underset{\sim}{\epsilon}: \underset{\sim}{\sigma} d \Omega+\int_{\Omega} \underline{\bar{u}} \cdot \underline{b} d \Omega+\int_{\Gamma_{N}} \underline{\bar{u}} \cdot \underline{t}_{N} d \sigma
$$

Using Voight Notation:

Displacement vector (same)
$\underline{u}=\left\{\begin{array}{l}u_{x}(x, y, z) \\ u_{y}(x, y, z) \\ u_{z}(x, y, z)\end{array}\right\}$

Stress
Tensor

$$
\begin{array}{ccc}
\text { Tensor } & & \begin{array}{c}
\text { vector } \\
\underset{\sim}{\sigma}
\end{array} \\
& \underline{\sigma}=\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{z z} \\
{\left[\begin{array}{ccc}
\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right]}
\end{array} \quad\left\{\begin{array}{l}
\sigma_{x y} \\
\sigma_{y z} \\
\sigma_{x z}
\end{array}\right\}\right.
\end{array}
$$

$$
\begin{aligned}
& \text { veal }\left\{\begin{array}{l}
\operatorname{div}\left(\sigma^{\top} \bar{u}\right)=\underline{u} \cdot \operatorname{div}(\underset{\sim}{\sigma})+\underset{\sim}{\sigma}: \nabla \bar{u} \\
\left(\sigma_{i j} \bar{u}_{i}\right)_{, j}=\sigma_{i j, j} \bar{u}_{i}+\sigma_{i j} \bar{u}_{i, j}
\end{array}\right. \\
& \begin{aligned}
G(\underline{u}, \underline{u}) & =\underbrace{\int_{\Omega} \operatorname{div}\left(\sigma^{\top} \underline{\bar{u}}\right) d \Omega}_{\underset{\sim}{\operatorname{Div} \cdot T h} .}-\int_{\Omega} \underset{\sim}{\epsilon}: \underset{\sim}{\sigma} d \Omega+\int_{\Omega} \underline{\bar{u}} \cdot \underline{b} d \Omega \\
& =\int_{\Gamma}\left(\dot{\sigma}^{\top} \underline{\bar{u}}\right) \cdot \underline{n} d \Gamma
\end{aligned}-\int_{\Omega} \underset{\sim}{\epsilon}: \underset{\sim}{\sigma} d \Omega+\int_{\Omega} \bar{u} \cdot \underline{b} d \Omega,
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\epsilon_{z x} & \epsilon_{2 y} & \sigma_{2 z}
\end{array} \quad(\gamma x z) \quad\left[\begin{array}{lll}
\sigma_{2 x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right] \quad\left\lfloor\sigma_{x z}\right\rfloor\right.} \\
& G(\underline{u}, \underline{\bar{u}})=-\int_{\Omega} \underline{\epsilon}^{\top} D \underline{\epsilon} d \Omega+\int_{\Omega} \underline{\underline{u}}^{\top} \underline{b} d \Omega+\int_{\Gamma} \underline{\underline{u}}^{\top} \underline{t}_{N} d \Gamma
\end{aligned}
$$

Discretization:

$$
G(\underline{u}, \underline{u})=-\sum_{e=1}^{M}\left[\int_{\Omega^{e}}\left(\underline{\epsilon}^{\top} \underline{\sim} \underset{\sim}{\underline{\epsilon}}-\underline{u}^{\top} \underline{b}\right) d \Omega-\int_{r_{N}^{e}} \underline{\underline{u}}^{\top} \underline{t}_{N} d r\right]
$$

Hexahedron

Prisms

FE approximation :

$$
\underline{\sigma}(x, y, z)=\underset{\sim}{D} \underset{\sim}{B} \underline{d}^{e}
$$

Substituting F approximation and Integrating_

$$
\widetilde{G}^{h}\left(\underline{d}^{G}, \underline{d}^{G}\right)=-\underline{d}^{G^{G}} \underbrace{\left({\underset{\sim}{G}}^{G} \underline{d}^{G}-\underline{f}^{G}\right)}=0 \quad \forall \underline{d}^{G}
$$

Solve enforcing BCS.
Postprocessing:

- Plot displaced shape
- Plot averaged stresses.

Same error measures hold: Displacement: $O\left(h^{p+1}\right)$
Straims/stresses: $O\left(h^{p}\right)$
Stored Strain: Energy: $O\left(h^{2 p}\right)$

Recall,

$$
\pi(\underline{u}) \stackrel{\text { Vainberg }}{\text { Minimize }} G(\underline{u}, \underline{\bar{u}})
$$

PVW/MWR

For 2D/3D Elasticity:

$$
\pi(\underline{u}) \equiv \int_{\Omega} \frac{1}{2} \underset{\sim}{\left(\epsilon_{i j} \sigma_{i j}\right)}: \sigma_{\sim} d \Omega-\int_{\Omega} \underline{u} \cdot \underline{b} d \Omega-\int_{\Gamma_{N}} \underline{u} \cdot \underline{t}_{N} d r
$$

Minimize using directional (Gateaux) derivative:

$$
\begin{aligned}
& D \Pi(\underline{u}) \cdot \underline{\bar{u}}=\left.\left[\frac{d}{d e} \pi(\underline{u}+e \underline{u})\right]\right|_{e=0}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\int_{\Omega}(\underline{u}+e \underline{\bar{u}}) \cdot \underline{b} d \Omega-\int_{\Omega}(\underline{u}+e \underline{\bar{u}}) \cdot \underline{t}_{N} d r\right\}\left.\right|_{e=0} \\
& =\int_{\Omega}[\underbrace{\frac{1}{2}\left(\nabla \bar{\sim}+\nabla{\underset{\sim}{u}}^{\top}\right)}_{\underset{\sim}{\bar{e}}}]: \underbrace{\underset{\sim}{c}\left[\frac{1}{2}\left(\nabla \underset{\sim}{u}+\nabla \nabla_{\sim}^{\top}\right)\right.}_{\underset{\sim}{c}}] d \Omega-\int_{\Omega} \underline{\bar{u}} \cdot \underline{b} d \Omega-\int_{\Gamma_{N}} \underline{\underline{u}} \cdot \underline{t}_{N} d \nabla \\
& D \pi(\underline{u}) \cdot \underline{\bar{u}}=G(\underline{u}, \underline{\bar{u}})
\end{aligned}
$$

Variational Methods can be used to enforce constraints on the problem.
Constraints can be written as:

$$
\underline{c}(\underline{u})=0
$$

For example:
(i) Say Γ_{I} must remain "connected" between $A \& B$.

Note: - This is a linear displacement-based constraint.

- This can be enforced simply by "assembling" the elements from $\Omega_{A} \& \Omega_{B}$ correctly.
- In general displacement Boundary conditions are also constraints.
(ii) Incompressible materials $\quad(\nu \rightarrow 0.5)$

$$
\underline{c}(\underline{u}) \equiv \operatorname{det}(\underset{\sim}{F})=0 \quad \text { on } \Omega
$$

This constraint is usually enforced with "mixed" methods.

$$
\begin{aligned}
& \underset{\sim}{\sigma}=\lambda \operatorname{tr}(\underset{\sim}{G}){\underset{\sim}{\sim}}+2 \mu \underset{\sim}{\epsilon}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (pressure) }
\end{aligned}
$$

The modified "mixed u-p" variational form is given by:

$$
\begin{aligned}
\pi(\underline{u}, p) \equiv & \int_{\Omega} \underline{E}^{\top} \underline{D}^{D E V} \in d \Omega+\int_{\Omega} \underline{\underline{e}}^{\top}\left[\begin{array}{l}
p \\
p \\
p \\
p \\
0 \\
0
\end{array}\right] d \Omega-\int_{\Omega} \underline{\bar{u}}^{\top} \underline{b} d \Omega-\int_{\Gamma_{N}} \underline{\underline{u}}^{\top} \underline{t}_{N} d \Gamma \\
& +\int_{\Omega} \bar{p}[p-K \operatorname{tr}(\underset{\sim}{\epsilon})] d \Omega=0 \quad \forall\left\{\begin{array}{l}
\bar{u} \\
\bar{p}
\end{array}\right\}
\end{aligned}
$$

(Ref. Z\&T:Ch10,11 for details)

$$
\left[\begin{array}{cc}
k_{u u}^{G} & k_{u p}^{q} \\
k_{p a}^{G} & k_{p p}^{G}
\end{array}\right]\left\{\begin{array}{l}
d \\
p
\end{array}\right\}=\left\{\begin{array}{l}
f_{u} \\
f_{p}
\end{array}\right\}
$$

Augmented Lagrangian approaches for constraints:
(i) Lagrange Multiplier:

$$
\begin{aligned}
& \pi(\underline{u}, \underline{\lambda})=\pi(\underline{u})+\underset{\underline{\lambda}}{ } \cdot \underline{c}(\underline{u}) \\
& D \tilde{\pi}(\underline{u}, \underline{\lambda}) \cdot \bar{u}=G(\underline{u}, \underline{u})+\underline{\lambda}^{\top} \cdot[D C(\underline{u}) \cdot \bar{u}]=0 \\
& D \tilde{\pi}(\underline{u}, \underline{\lambda}) \cdot \underline{\lambda}=\underline{c}(\underline{u})=0 \\
& D \tilde{\pi}(\underline{u}, \underline{\lambda}) \cdot\left[\begin{array}{l}
\overline{\bar{u}} \\
\overline{\bar{\lambda}}
\end{array}\right\}=\left\{\underline{\underline{d}}^{-G^{\top}} \underline{\lambda}^{\top}\right\} \cdot\left\{\left[\begin{array}{cc}
{\underset{\sim}{c}}^{G} & {\underset{\sim}{c}}^{\top} \\
\underset{\sim}{c} & 0
\end{array}\right]\left\{\begin{array}{c}
\underline{d}^{G} \\
\underline{\lambda}
\end{array}\right\}-\left\{\begin{array}{c}
\underline{f}^{G} \\
\underline{o}
\end{array}\right\}\right\}=0
\end{aligned}
$$

(Note: $B B$ conditions for "Mixed" methods)
(ii) Penalty Methods:

$$
\tilde{\Pi}(\underline{u}) \equiv \pi(\underline{u})+\frac{1}{2} \alpha \underset{\longrightarrow}{(\underline{c}(\underline{u}))^{2}} \text { Large penalty parameter }
$$

Minimization:

$$
D \tilde{\pi}(\underline{u}) \cdot \underline{u}=G(\underline{u}, \underline{u})+\underbrace{\alpha \underline{c}(\underline{u}) \cdot D \underline{c}(\underline{u}) \cdot \underline{\bar{u}}}_{\text {Usually }^{\prime \prime} \text { inconsistent } "} \forall \underline{\underline{u}}
$$

leads to:

$$
\left.\underline{d}^{G^{\top}}\left[\left(\underset{\sim}{k^{G}}+\underset{\sim}{k^{*}}\right) \underline{d}^{G}-\left(\underline{f^{G}}+\underset{\uparrow}{f}\right)^{*}\right)\right]=0 \quad \forall
$$

Penalty contribution

