Consider the 1-D problem:
Find $\sigma(x), u(x)$:
(5) $\left[B C \sigma^{\sigma^{\prime}+b=0} \quad \forall x \in(0, l)\right.$

$$
\begin{aligned}
u(0) & =u_{0} \quad \text { on } \Gamma_{D} \\
t(l)=\sigma(l)(+1) & =t_{l}
\end{aligned} \quad \text { on } \Gamma_{N}
$$

Ref: Hjelmotad ch 5\&6 Reddy ch $2 \& 3$
Hughes ch 1

This is called the strong form (S) of the governing differential equation (GDE).
Method of Weighted Residuals:

If for some $\sigma(x)$:

$$
G(\sigma, \bar{u})=0 \quad \forall \bar{u} \in V(0, \ell)
$$

Then \Rightarrow

$$
\begin{array}{ll}
\sigma^{\prime}+b=0 & \forall x \text { in }(0, l) \\
\sigma(l)(+1)=t_{l} & \text { at } x=l \\
\sigma(0)(-1)=t_{0} & \text { at } x=0
\end{array}
$$

Function space

If $\bar{u}=\left(\sigma^{\prime}+b\right): G(\sigma, \bar{u})=\int\left(\sigma^{\prime}+b\right)^{2} d x$

This is the fundamental theorem of Calculus of Variations. This also poses a restriction $\bar{u} \in V(0, l)$:
\bar{u} must he square integrable
ie

$$
\underbrace{\int_{0}^{l}(\bar{u})^{2} d x}_{L_{2} \text {-norm of } \bar{u}(x)} \begin{gathered}
\text { must exist } \\
\text { (lu finite) }
\end{gathered}
$$

Possible choices for function spaces:

- Square integrable: $L_{2}\left(\right.$ or $\left.H^{0}\right) \rightarrow$ Continuous functions: C^{0}
- Sq. Int. up to $1^{1^{t}}$ derivative : $H^{10} \longrightarrow$ Continuous unto $1^{\text {st }}$ der. $: C^{1}$
- Sq. Int unto $m^{\text {th }}$ derivative : $H^{m} \xrightarrow{\longrightarrow}$. Continuous upton $m^{\text {th }}$ der : C^{m}

Note: Dirac-delta $\delta\left(x-x_{0}\right)$ is not L_{2}.

Equivalence with Principle of Virtual Work: (PVW)

$$
\begin{aligned}
& G(\sigma, \bar{u})=-\int_{0}^{l} \bar{u}\left(\sigma^{\prime}+b\right) d x-\bar{u}(l)\left(t_{l}-\sigma(l)\right)-\bar{u}(0)\left(\sigma(0)+t_{0}\right) \\
& G(\sigma, \bar{u})=\int_{0}^{l}\left(\bar{u}^{\prime} \sigma\right) d x \underbrace{\left.\sum_{0} \bar{u}\right]_{0}^{l}}_{-\sigma(b)(\bar{u}(l)+\sigma(0) \bar{u}(0)}-\int_{0}^{l} \bar{u} b d x \\
& \text { (Integration by parts) } \\
& +\left(\sigma(l)-t_{\imath}\right) \bar{u}(l)-\left(o f(0)+t_{0}\right) \bar{u}(0) \\
& \Rightarrow G(\sigma, \bar{u})=\underbrace{\int_{0}^{l}\left(\bar{u}^{\prime} \sigma\right) d x}_{W_{I}}-\underbrace{\int_{0}^{l} \bar{u} b d x-t_{l} \bar{u}(l)-t_{0} \bar{u}(0)}_{W_{E}} \\
& \text { because } \\
& t_{0}=\sigma(0)(-1) \\
& t_{l}=\sigma(l)(+1) \\
& \text { (Natural jCs) } \\
& \text { Essential BC } \\
& u(0)=u_{0}
\end{aligned}
$$

Note: Unknowns to solve for: $\sigma(x)$ \& t_{0}
So further restrict $\bar{u}(0)=0$ on I_{D}
[If for some $\sigma(x)$
$P V W$ Then

$$
G(\sigma, \bar{u})=W_{I}-W_{E}=0 \quad \forall \quad \bar{u}(x) \in H_{0}^{\prime}(0, l)
$$

\backslash denotes $\bar{u}(0)=0$

$$
\begin{array}{rlrl}
\Rightarrow \quad \sigma^{\prime}+b & =0 \quad \forall x \in(0, l) \\
\sigma(l) & =t_{l} & \text { at } x=l
\end{array}
$$

Note: It poses additional restriction on $\bar{\omega} \in H_{0}^{\prime}(0, l)$
Now Introduce $\sigma=\sigma(\epsilon)$ say: $\sigma=C u$ '
Define

$$
\tilde{G}(u, \bar{u}) \equiv \underbrace{\int_{0}^{\ell} \bar{u}^{\prime}\left(c u^{\prime}\right)}_{W_{I}} d x-[\underbrace{\int_{0}^{\ell} \bar{u} b d x+\bar{u}(l) t_{\ell}}_{W_{E}}]
$$

Problem statement:
Find $u(x) \in\left\{H^{1}(0, l)\right.$ and $u(0)=u_{0}$ on $\left.\Gamma_{D}:(x=0)\right\}$
(w) such that

$$
\tilde{G}(u, \bar{u})=0 \quad \forall \quad \bar{u}(x) \in \quad H_{0}^{1}(0, l)
$$

This is called the Weak form (W) or integral form.
Note: $\quad(\mathrm{S} \Leftrightarrow$

Alternative Notation:
Bilinear forms:

$$
\begin{aligned}
a(\bar{u}, u) & \equiv \int_{0}^{l} \bar{u}^{\prime}\left(c u^{\prime}\right) d x \quad\left(=W_{I}\right) \quad(=B(\bar{u}, u)) \\
(\bar{u}, b) & \equiv \int_{0}^{l} \bar{u} b d x
\end{aligned}
$$

Thus

$$
\begin{aligned}
\tilde{G}(u, \bar{u}) & =a(\bar{u}, u)-\underbrace{(\bar{u}, b)-\bar{u}(l) t_{e}} \\
& =B(\bar{u}, u)-l(\bar{u}, b) \\
& =W_{I}-W_{E}
\end{aligned}
$$

Aside: Gist of the "proof" of Fundamental theorem of calculus of variations (see Lee 7 video for details)

$u^{-(x)}$

if

$$
\int_{0}^{\ell}[r(x)]^{2} d x=0
$$

$$
\Rightarrow r(x)=0
$$

$$
r(x) \equiv v^{\prime}(x)+b(x)
$$

$\forall \bar{u}(x) \quad G(\sigma, \bar{u})=0 \Rightarrow \sigma^{\prime}(x)+b=0$

The Ritz Method
(W) form of the problem is still infinite dimensional.

Introduce approximation:
(Assume a certain form of the solution)

$$
\begin{aligned}
u(x) \cong u^{h}(x) & =\sum_{i=1}^{N} a_{i} h_{i}(x)+h_{0}(x)- \\
& =\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{N}
\end{array}\right]\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
\vdots \\
h_{N}(x)
\end{array}\right]- \\
u(x) & =\underline{a}^{\top} \underline{h}(x)
\end{aligned}
$$

n : smooth enough complete

$$
\left\{h_{i}\right\}_{i=1: N} \subset H_{0}^{1}(0, l)
$$

Note: Essential $B C \quad u(0)=u_{0}$ is satisfied by $h_{0}(x)$
(basis) (shape)
Examples of $h_{i}(x)$:

- Polynomials $\left\{1, \frac{x}{l},\left(\frac{x}{l}\right)^{2}, \ldots\right\}$
- Trigonometric $\left\{1, \sin \left(n \pi \frac{x}{l}\right), \cos \left(n \frac{\pi x}{l}\right)\right\} \quad n=1,2,3 \ldots$
- Piecewise Polynomial (FE)

What about $\bar{w}(x)$?
Galerkin Approximation

$$
\begin{aligned}
\bar{u}(x) \cong \bar{u}^{h}(x) & =\sum_{i=1}^{N} \bar{a}_{i} h_{i}(x) \\
& =\left[\begin{array}{llll}
\bar{a}_{1} & \bar{a}_{2} & \ldots & \bar{a}_{N}
\end{array}\right]\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
h_{N}(x)
\end{array}\right] \\
\bar{u}(x) & =\underline{a}^{\top} \underline{h}(x)
\end{aligned}
$$

Note for ALL $\left\{\bar{a}_{i}\right\}$
Discretized Galerkin Form:
$\left[\right.$ Find $\quad \underline{a}=\left\{\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n}\end{array}\right\}$
such that:
(G)

$$
\begin{aligned}
& \widetilde{G}^{h}(\underline{a}, \underline{\bar{a}}) \equiv \int_{0}^{l} \underbrace{\left(\underline{\bar{a}}^{\top} \underline{h}\right)^{\prime}}_{\bar{u}^{h^{\prime}}} C(\underbrace{\left(\underline{a}^{\top} \underline{h}+h_{0}\right.}_{u^{h^{\prime}}})^{\prime} d x-\int_{0}^{l} \underbrace{\left(\underline{a}^{\top} \underline{h}\right)}_{\bar{u}^{h}} b d x-\underbrace{\left(\underline{\underline{a}}^{\top} \underline{h}(l)\right.}_{\bar{u}^{h}(l)})\left(t_{l}\right) \\
& G^{h}(\underline{a}, \bar{a})=0 \quad \text { FOR ALL } \underline{\bar{a}}
\end{aligned}
$$

This is called the discretized Galerkin Form (G)
Note
(S) $\Leftrightarrow \stackrel{- \text { Approx }}{\approx}$

Upon simplification:

$$
\begin{aligned}
& \tilde{G}^{h}(\underline{a}, \bar{a})=\underbrace{\underline{a}^{\top}\left[\int_{0}^{l} C \underline{h}^{\prime} \underline{h}^{\prime^{\top}} d x\right]}_{\underline{a}^{\top} \underset{\sim}{k}} \underline{a}+\underline{\underline{a}}^{\top}\left\{\int_{0}^{l} \underline{h}^{\prime} c h_{0}^{\prime} d x\right\} \\
& \tilde{G}^{h}(\underline{a}, \bar{a})=\underline{\bar{a}}^{\top}(\underset{\sim}{k} \underline{a}-\underline{f})=0
\end{aligned}
$$

ie.

Note:
This equation would he satisfied FOR ALL \bar{a}^{\top}

$$
\text { if } \quad K \underline{a}=\underline{f}
$$

Steps for the Method of Weighted Residuals

1) GDE: multiply with $\bar{u}(x) \rightarrow$ Integrate $\Rightarrow G(\sigma, \bar{u})$
2) Integrate $G(\sigma, \bar{u})$ by parts to balance the derivatives
3) Approximation $\bar{u}(x) ; u(x)$: $\sum_{i=1}^{N} a_{i} h_{i}(x)$
4) Solution $\underline{a}=k^{-1} f$

$$
k \underline{a}=\underline{f}
$$

Example: Find $u(x)$ such that
$B C$

$$
\begin{aligned}
\left(C u^{\prime}\right)^{\prime}+b=0 & \text { on } \\
u(0)=u_{0} & \text { at } x=0 \\
\sigma(l)=\left(C u^{\prime}\right)(l)=t_{l} & \text { at } x=l
\end{aligned}
$$

$$
\begin{aligned}
& 1 \\
& b=\rho_{g}^{\prime}-10 \\
& c=1 \\
& u_{0}=0 \\
& t_{\ell}=10
\end{aligned}
$$

Soln:
(1)

$$
\begin{aligned}
\tilde{G}(u, \bar{u}) & \equiv-\int_{0}^{l} \bar{u}\left(\left(c^{\prime}\right)^{\prime}+b\right)-\bar{u}(l) t_{l} \\
& =\underbrace{\int_{0}^{l} \bar{u}^{\prime}\left(C u^{\prime}\right) d x}_{W_{I}}-\underbrace{\left(\int_{0}^{l} \bar{u} b d x+\bar{u}(l) t_{l}\right)}_{W_{E}}
\end{aligned}
$$

(2)
(3) Approx:

$$
G(\underline{a}, \bar{a})=\underline{a}^{\top}(\underset{\sim}{k} \underline{a}-f)
$$

$$
\begin{aligned}
& h_{1}(x)=x / L \\
& h_{2}(x)=(x / L)^{2} \\
& h_{3}(x)=(x / L)^{3}
\end{aligned}
$$

$$
u(x) \cong u^{h}(x)=\sum_{i=1}^{N} a_{i} h_{i}(x)
$$

$$
\overline{\underline{a}}^{\top}=\left[\begin{array}{llll}
\bar{a}_{1} & \bar{a}_{2} & \cdots & \bar{a}_{N}
\end{array}\right]
$$

$$
\begin{aligned}
& \underline{a}=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots a_{N}
\end{array}\right] \\
& K=\int_{0}^{l} C\left\{\left[\begin{array}{c}
(L / L) \\
2 x / L^{2} \\
3 x^{2} / L^{3} \\
\vdots \\
N \\
\frac{x^{N-1}}{L^{N}}
\end{array}\right]\left[\left(\frac{1}{L}\right)\left(\frac{2 x}{L^{2}}\right) \cdots\left(N \frac{x^{N-1}}{L^{N}}\right)\right]\right\} d x \\
& a=\left[\begin{array}{lll}
a_{1} & a_{2} & \cdots
\end{array} a_{N}\right]
\end{aligned}
$$

$$
\begin{aligned}
& k_{i j}=c \int_{0}^{l}\left(i \frac{x^{i-1}}{L^{i}} \cdot j \frac{x^{j-1}}{L^{j}}\right) d x=\frac{i \cdot j}{L^{i+j}}\left[\frac{x^{(i+j-1)}}{(i+j-1)}\right]_{0}^{L} \\
& =\frac{i \cdot j}{L(i+j-1)} \\
& \underset{\sim}{K}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 4 / 3 & 6 / 4 & 8 / 5 \\
1 & 6 / 4 & 9 / 5 & 12 / 6 \\
1 & 8 / 5 & 12 / 6 & 16 / 7
\end{array}\right] \\
& \underline{f}=\int_{0}^{l} \underline{h} b d x+\underline{h}(x) t_{l}+\int_{0}^{l} c b^{\prime} / h_{0}^{\prime} d x \\
& =\int_{0}^{l}\left[\begin{array}{c}
(x / L) \\
(x / L)^{2} \\
\vdots \\
(x / L)^{N}
\end{array}\right] b d x+\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] t_{l} \\
& \underline{f}=\left[\begin{array}{c}
\frac{100}{2}+10 \\
\frac{100}{3}+10 \\
\vdots \\
\frac{100}{N+1}+10
\end{array}\right] \\
& \text { (4) } \\
& \underline{a}=\underset{\sim}{k^{-1}} f
\end{aligned}
$$

- Types of Weighted residuals

$$
\widetilde{G}(u, \bar{u})=-\int_{0}^{l} \bar{u} \underbrace{\left(\left(C u^{\prime}\right)^{\prime}+b\right)}_{v(x) \text { (residual) }} d x-\bar{u}(l)\left(t_{l}-\sigma(l)\right)
$$

Approximation

$$
u(x) \cong u^{h}(x)=\underline{a}^{\top} \underline{h}(x)
$$

1) Galerkin (Bubnov-Galerkin) (same $\underline{h}(x)$)

$$
\bar{u}(x) \cong \bar{u}^{h}(x)=\underline{a}^{\top}(\underline{h}(x))
$$

leads to $\tilde{G}(\underline{a}, \underline{\bar{a}})=\underline{\bar{a}}^{\top}(\underset{\sim}{\underset{\sim}{a}} \underline{\underline{a}}-\underline{f})=0$
where $K_{\sim}^{K}=\int C \underline{h}^{\prime} \underline{h}^{\prime} d x \quad$ (symmetric)

$$
k_{i j}=k_{j i}
$$

2) Petrou-Galerkin

$$
\bar{u}(x) \cong \bar{u}^{h}(x)=\underline{a}^{\top} \underline{h}(x)
$$

leads to $\tilde{G}^{P G}=\underline{\underline{a}}^{\top}\left(\underline{\sim}^{P G} \underline{a}^{p G}-\underline{f}^{P G}\right)$
R Different $\underline{\underline{L}}(x)$
${\underset{\sim}{K}}_{P G}^{K^{\prime}}=\int C \underline{\underline{h}}^{-1} \underline{h}^{T T} d x \quad$ (In general, non symmetric)

$$
K_{i j}^{P_{i}} \neq K_{j i}^{P_{i}^{C}}
$$

3) Collocation:

Residual enforced $=0$ at a chosen Collection of points.

$$
\bar{u}(x)=\delta\left(x-x_{i}\right)
$$

Leads to:

$$
G(u, \bar{u})=\int_{0}^{l} \delta\left(x-x^{i}\right)\left[\begin{array}{c}
\left.\left(C u^{\prime}\right)^{\prime}+b\right] \\
\left(\underline{a}^{\top} \underline{h}\right)
\end{array}\right.
$$

$$
\left.\begin{array}{rl}
\Rightarrow & \left.\left(C \underline{h}^{\prime}\right)^{\prime}\right|_{x_{1}} \underline{a}=-b\left(x_{1}\right) \\
& \left.\left(C \underline{h}^{T^{\prime}}\right)^{\prime}\right|_{x_{2}} \underline{a}=-b\left(x_{2}\right)
\end{array}\right\} \Rightarrow \quad k^{c^{c o}} \underline{a}^{c_{0}}=f^{c_{0}}
$$

4) Least squares method

Choose $\bar{u}(x)=\left(\mathrm{Cu}^{\prime}\right)^{\prime}+b=r(x)$
leads to $\tilde{G}^{L s}=\int_{0}^{l} \overbrace{\left[\left(u^{\prime}\right)^{\prime}+b\right]^{2}}^{[v(x)]^{2}} d x+\left[t_{l}-C u^{\prime}(l)\right]^{2}$
Now substitute Approx: $u(x)=\underline{a}^{\top} \underline{\underline{h}}(x)$

$$
\Rightarrow \widetilde{G}^{L S}=2 \int_{0}^{l}\left[\underline{a}^{\top}\left(C \underline{h^{\prime}}\right)^{\prime}+b\right]^{2} d x+\left[t_{l}-\underline{a}^{\top}\left(C \underline{h}^{\prime}(l)\right)\right]^{2}=0
$$

Minimize $G^{L S}$ to get approximate solution:

$$
\frac{\partial \tilde{G}^{L S}}{\partial \underline{a}}=\int_{0}^{l}\left(C \underline{h}^{\prime}\right)^{\prime}\left[\underline{a}^{\top}\left(C \underline{h}^{\prime}\right)^{\prime}+b\right] d x+\left(C \underline{h}^{\prime}(l)\right)\left[t_{e}-\underline{a}^{\top}\left(C \underline{h}^{\prime}(l)\right)\right]
$$

Finally, we get

$$
{\underset{\sim}{K}}_{K^{L s}}^{\underline{a}^{L s}}=\underline{f}^{L s}
$$

$$
\begin{aligned}
& \text { where } \\
& \text { (symmetric) } \int_{\sim}^{l s}= \\
& \int_{0}^{l}\left[\begin{array}{c}
\left(C h_{1}^{\prime}\right)^{\prime} \\
\left(C h_{2}^{\prime}\right)^{\prime} \\
\vdots \\
\left(C h_{N}^{\prime}\right)^{\prime}
\end{array}\right]\left[\left(C h_{1}^{\prime}\right)^{\prime}\left(C h_{2}^{\prime}\right)^{\prime} \cdots\left(C h_{N}^{\prime}\right)^{\prime}\right] d x \\
&+\left[\begin{array}{c}
\vdots \\
C \underline{h}_{i}^{\prime}(l) \\
\vdots \\
\vdots
\end{array}\right]\left[\cdots C{h_{i}^{\prime}}_{i}^{\prime}\right)-\cdots
\end{aligned}
$$

1-D Finite Element Basis
Example: Find $u(x)$ such that
$\left[B C\left(C u^{\prime}\right)^{\prime}+b=0\right.$ on $x \in(0, l)$
(s)

$$
\begin{array}{cl}
u(0)=u_{0} & \text { at } x=0 \\
\sigma(l)=\left(c u^{\prime}\right)(e l)=t_{l} & \text { att } x=l \\
\left.G(u, \bar{u})=\int_{0}^{\prime} \bar{u}_{l}(C u) d x-\int_{0} \bar{u} b d x-\bar{u} d\right) t_{l}
\end{array}
$$

Find $u(x) \in\left\{H^{1}(0, l)\right.$ and $\left.u(0)=u_{0}\right\}$
(w) $\left[\begin{array}{l}G(u, \bar{u})=0 \quad \forall \bar{u} \in H_{0}^{1}(0, l) \\ \bar{u}(0)=0\end{array}\right.$

$$
\begin{aligned}
& \text { Approximation } \\
& u(x)=\sum_{i=1}^{N} a_{i} h_{i}(x)+a_{0} h_{0}(x) \\
&=\left[\begin{array}{ll}
0 \\
1 & a_{2}
\end{array}-a_{N}\right]\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
h_{N}^{\prime}(x)
\end{array}\right] \\
& u(x)=\underline{a}^{\top} \underline{h}(x) \\
& \bar{u}(x)=\underline{a}^{\top} \underline{h}(x) \quad \text { Galerkin) } \\
& \Rightarrow \quad G(a, \bar{a})=\underline{a}^{\top}(\underset{\sim}{K} \underline{a}-f)
\end{aligned}
$$

1-D Finite Element Basis Functions

$$
\begin{gathered}
L_{e}=\frac{L}{N}(N=4) \\
h_{i}(x)=\left\{\begin{array}{l}
\frac{x-x_{i-1}}{x_{i}-x_{i-1}}:\left[x_{i-1}, x_{i}\right] \\
\frac{x_{i+1}-x}{x_{i+1}-x_{i}}:\left[x_{i}, x_{i+1}\right]
\end{array}\right. \\
h_{i}^{\prime}(x)=\left\{\begin{array}{l}
\frac{1}{l_{e}}:\left[x_{i-1}, x_{i}\right] \\
-\frac{1}{l_{e}}:\left[x_{i}, x_{i+1}\right]
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
& \underset{\sim}{k}=\int_{0}^{l} c \underline{h}^{\prime} \underline{h}^{\top} d x \\
& =\int_{0}^{l} c\{\underbrace{\left[\begin{array}{c}
h_{1}^{\prime} \\
h_{2}^{\prime} \\
\vdots \\
h_{4}^{\prime}
\end{array}\right]}\left[\begin{array}{lll}
h_{1}^{\prime} & h_{2}^{\prime} & h_{3}^{\prime} \\
h_{4}^{\prime}
\end{array}\right]\} d x \underbrace{\left[\begin{array}{cccc}
h_{1}^{\prime} h_{1}^{\prime} & h_{1}^{\prime} h_{2}^{\prime} & 0 & 0 \\
& h_{2}^{\prime} h_{2}^{\prime} & h_{2}^{\prime} h_{3}^{\prime} & 0 \\
\text { sym } & h_{3}^{\prime} & h_{3}^{\prime} & h_{3}^{\prime} h_{4}^{\prime} \\
h_{4} & h_{4}^{\prime}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& K_{i, i+1}=\int_{x_{i}}^{x_{i+1}} c\left(\frac{1}{l_{e}}\right)\left(\frac{-1}{l_{e}}\right) d x=-\frac{c}{l_{e}} \\
& \underset{\sim}{K}=\frac{e}{l_{e}}\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right] \\
& \underline{f}=\int_{0}^{l} \underline{h} b d x+\underline{h}(l) t_{l}=\left(\int_{0}^{l} \underline{h} d x\right) b+\underline{h}(l) t_{l} \\
& {\left[\begin{array}{l}
l_{e} \\
l_{e} \\
l_{e} \\
l_{e / 2}
\end{array}\right] b+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \text { te }=\left[\begin{array}{l}
l_{e} b \\
l_{e} b \\
l_{e} b \\
\frac{e}{2} b \\
2
\end{array}\right]} \\
& \underline{a}={\underset{\sim}{k}}^{-1} \underline{f}
\end{aligned}
$$

1-D Finite Element Implementation
When implementing Finite Elements on a computer, it is more convenient to express all quantities in an "element"-wise fashion.

Recall:

$$
G(u, \bar{u})=\int_{0}^{l} \bar{u}^{\prime} C u^{\prime} d x-\int_{0}^{l} \bar{u} b d x-\bar{u}(l) t_{l}
$$

This integral may be written as a sum over "elements":

$$
G(u, \bar{u})=\sum_{e=1}^{M}\left[\int_{x_{e}}^{x_{e+1}} \bar{u}^{\prime} C w^{\prime} d x\right]-\sum_{e=1}^{M}\left[\int_{x_{e}}^{x_{e}+1} \bar{u} b d x\right]-\bar{u}(l) t_{e}
$$

Approximating $u(x)$ and $\bar{u}(x)$ within element " e " as:

$$
\begin{aligned}
u(x) \approx u_{e}^{h}(x) & =N_{1}^{e}(x) \\
& d_{1}^{e}+N_{2}^{e}(x) d_{2}^{e} \\
& =\left[\begin{array}{ll}
N_{1}^{e}(x) & N_{2}^{e}(x)
\end{array}\right]\left[\begin{array}{c}
d_{1}^{e} \\
\hdashline d_{2}^{e}
\end{array}\right] \quad \text { i.e. } u_{e}^{h}(x)=N_{\sim}^{d} \underline{d}
\end{aligned}
$$

where $N_{1}^{e}(x)=\left.h_{e}(x)\right|_{\left(x_{e}<x<x_{e+1}\right)}=\left(\frac{x_{e+1}-x}{x_{e+1}-x_{e}}\right)$ and $N_{2}^{e}(x)=\left.h_{e+1}(x)\right|_{\left(x_{e}<x<x_{e+1}\right)}=\left(\frac{x-x_{e}}{x_{e+1}-x_{e}}\right)$

similarly

$$
\bar{u}(x) \approx \bar{u}_{e}^{h}(x)=\left[\begin{array}{l:l}
N_{1}^{e}(x) & N_{2}^{e}(x)
\end{array}\right]\left[\begin{array}{c}
\bar{d}_{1}^{e} \\
\hdashline \bar{d}_{2}^{e}
\end{array}\right]
$$

Using this approximation:

$$
u^{\prime}(x) \approx \frac{d u_{e}^{h}}{d x}=\left[\begin{array}{l:l}
\frac{d N_{1}^{e}}{d x} & \frac{d N_{2}^{e}}{d x}
\end{array}\right]\left[\begin{array}{c}
d_{1}^{e} \\
\hdashline d_{2}^{e}
\end{array}\right] \text { ie. } \epsilon_{e}^{h}(x)=\underset{\sim}{B} \underline{d}
$$

and

$$
\bar{u}^{\prime}(x) \approx \frac{d}{d x} \bar{u}_{e}^{h}=\left[\begin{array}{l:c}
\frac{d N_{1}^{e}}{d x} & \frac{d N_{2}^{e}}{d x}
\end{array}\right]\left[\begin{array}{c}
\bar{d}_{1}^{e} \\
\hdashline \bar{d}_{2}^{e}
\end{array}\right]
$$

Substituting the boxed equations into the weak form:

In the expanded form:

$$
\tilde{G}^{n}\left(\{\underline{d}\}_{e=1}^{M},\{\underline{d}\}_{e=1}^{M}\right)=0
$$

Note: $\quad d_{1}^{G}=d_{1}^{\prime}$

$$
\begin{aligned}
& d_{2}^{G}=d_{2}^{1}=d_{1}^{2} \\
& d_{3}^{G}=d_{2}^{2}=d_{1}^{3} \\
& \vdots \\
& d_{M}^{G}=d_{2}^{M-1}=d_{1}^{M} \\
& d_{M+1}^{G}=d_{2}^{M}
\end{aligned}
$$

This means that "Global" equation can he ASSEMBLED by taking these terms common:-

$$
\begin{aligned}
& \tilde{G}^{n}\left(\{\underline{d}\}_{e=1}^{m},\{\underline{d}\}_{e=1}^{m}\right)=\left[\begin{array}{lll}
\bar{d}_{1}^{\prime} & \vdots & \bar{d}_{2}^{\prime}
\end{array}\right]\left\{\left[\begin{array}{ll}
K_{11}^{\prime} & K_{12}^{\prime} \\
k_{21}^{\prime} & k_{22}^{\prime}
\end{array}\right]\left[\begin{array}{l}
d_{1}^{\prime} \\
d_{2}^{\prime}
\end{array}\right]-\left[\begin{array}{l}
f_{1}^{\prime} \\
f_{2}^{\prime}
\end{array}\right]\right\} \\
& d_{2}^{e^{e}=d_{1}^{e+1}} \\
& +\left[\begin{array}{l:l}
\bar{d}_{1}^{2} & \bar{d}_{2}^{2}
\end{array}\right]\left\{\left[\begin{array}{ll}
k_{11}^{2} & k_{12}^{2} \\
k_{21}^{2} & k_{22}^{2}
\end{array}\right]\left[\begin{array}{l}
d_{1}^{2} \\
d_{22}^{2}
\end{array}\right]-\left[\begin{array}{l}
f_{1}^{2} \\
f_{2}^{2}
\end{array}\right]\right\} \\
& +\quad \vdots \\
& +\left[\begin{array}{l:l}
\bar{d}_{1}^{M} & \bar{d}_{2}^{M}
\end{array}\right]\left\{\left[\begin{array}{ll}
k_{11}^{M} & k_{12}^{M} \\
k_{21}^{M} & k_{22}^{m}
\end{array}\right]\left[\begin{array}{l}
d_{1}^{m} \\
d_{22}^{M}
\end{array}\right]-\left[\begin{array}{l}
f_{1}^{m} \\
f_{2}^{m}
\end{array}\right]\right\}-\underset{d^{m+1}}{\underbrace{u(l)}_{b}} \underbrace{t_{l}}_{l}
\end{aligned}
$$

$$
\begin{aligned}
& G(u, \bar{u})=\sum_{e=1}^{M}\left[\int_{x_{e}}^{x_{e+1}} \bar{u}^{\prime} C w^{\prime} d x\right]-\sum_{e=1}^{M}\left[\int_{x_{e}}^{x_{e+1}} \bar{u} b d x\right]-\bar{w}(e) t_{e} \\
& G(u, \bar{u}) \approx \tilde{G}^{n}\left(\{\underline{d}\}_{e=1}^{m},\{\underline{\bar{d}}\}_{e=1}^{m}\right)
\end{aligned}
$$

ie.

$$
\begin{aligned}
& \tilde{G}^{h}\left(\{\underline{d}\}_{e=1}^{M},\{\underline{d}\}_{e=1}^{M}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\left\{\begin{array}{ccc}
d_{1}^{G} & d_{2}^{G} & \ldots
\end{array} \bar{d}_{m}^{G} \bar{d}_{M+1}^{G}\right\}\left\{\begin{array}{c}
f_{1}^{\prime} \\
f_{2}^{\prime}+f_{1}^{2} \\
f_{2}^{2}+f_{1}^{3} \\
\vdots \\
\vdots \\
f_{2}^{M-1}+f_{1}^{M} \\
f_{2}^{M}
\end{array}\right\}+t_{l}
\end{aligned}
$$

Finally ${\underset{G}{G}}^{h}\left(\underline{d}^{G}, \underline{d}^{G}\right)=\underline{d}^{G}\left[K^{G} \underline{d}^{G}-\underline{f}^{G}\right]=0$
Boundary Conditions:
Note that our "N" functions do NOT satisfy essential boundary conditions.
To enforce BC, we divide our "dofs" into "free" \& "specified" say

$$
\underline{d}^{G^{T}}=\left\{\begin{array}{llllll}
d_{1}^{G} & d_{2}^{G} & d_{3}^{G} & \ldots & \ldots . . & d_{M}^{G}
\end{array} d_{M+1}^{G}\right\}
$$

Thus rearrange so that:
\Rightarrow Solve $\left[\begin{array}{c}K_{\sim}^{G} f\end{array}\right]\left\{\underline{d}_{f}^{G}\right\}=\left\{\underline{f}_{f}^{G}\right\}-\left[K_{\sim}^{G}\right]\left\{\underline{d}_{s}^{G}\right\} \quad$ for $\quad \underline{d_{f}^{G}}$
and

$$
\underline{f}_{s}^{G}=\left[\underset{\sim}{k_{s f}^{G}}\right]\left\{d_{f}^{G}\right\}+\left[\underset{\sim}{k_{s s}^{G}}\right]\left\{d_{s}^{G}\right\} \quad \text { (support reactions) }
$$

Post processing:
Using \underline{d}^{G} calculate stresses in each element.

- Properties of the Stiffness Matrix $\underset{\sim}{K}$

Recall:

$$
\begin{aligned}
& \text { In order to solve:. }
\end{aligned}
$$

ie.

$$
\left[K_{\sim}^{G} f\right]\left\{\underline{d}_{f}^{G}\right\}=\left\{\underline{f}_{f}^{G}\right\}_{\text {eff. }} \quad \text { where }\left\{\underline{f}_{f}^{G}\right\}_{e f f}=\left\{\underline{f}_{f}^{G}\right\}-\left[{\underset{\sim}{k}}^{G}\right]\left\{\underline{d}_{s}^{G}\right\}
$$

Con we always solve for $\left\{\underline{d}_{f}^{G}\right\}$?

- Eigenvalues will help us decide.
- Recall when solving $\underset{\sim}{A} \underline{x}=\underline{b} ; \quad(\underset{\sim}{K} \underset{d}{d} \underline{f})$

Eigenvalues \& Eigenvectors of $\underset{\sim}{\sim}$;
are

$$
\underset{\sim}{A} \underline{v}=\lambda \underline{v} \quad ; \quad \underset{\sim}{K} \underline{v}=\lambda \underline{w}
$$

ie. $\quad \operatorname{det}(A-\lambda \underset{\sim}{I})=0 ; \quad \operatorname{det}(\underset{\sim}{K}-\lambda \underset{\sim}{I})$
Properties of $\underset{\sim}{K}$:

- Symmetric

$$
\begin{aligned}
& \underset{\sim}{k^{G}}=\underset{\sim}{k^{G^{\top}}} \quad ; \quad\left(\underset{\sim}{k}{\underset{\sim}{e}}^{e}=\underset{\sim}{k^{e^{\top}}}\right) \\
& \underset{\sim}{k_{f f}^{G}}=\underset{\sim}{k_{f f}^{G^{T}}}
\end{aligned}
$$

- Banded:

- Positive Definite

A matrix A is said to positive-definite
ifs

$$
\begin{aligned}
& \underline{c}^{\top} \underset{\sim}{A} \geq 0 \quad \text { for } \underline{a l l} \underline{c} \text { vectors } \\
& \text { - } \underline{c}^{\top} \underset{\sim}{A} \underline{c}=0 \quad \underline{c}=0
\end{aligned} \Rightarrow \begin{aligned}
& \text { - EigenVal ar } \\
& \lambda>0 \\
& \text { - Solvers }
\end{aligned}
$$

Note:

- $\underset{\sim}{K^{e}}$ and ${\underset{\sim}{k}}^{G}$ are semi-positive definite $(\lambda \geqslant 0)$
ie. there are some $\lambda_{i}=0$ (Rigid body modes)
egg.

Solve:

$$
\frac{C A}{l_{e}}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]=\left[\begin{array}{c}
-f \\
f
\end{array}\right]
$$

$$
5
$$

$$
\text { Void Rode Displacement }=\left[\begin{array}{l}
a \\
a
\end{array}\right]
$$

Rigid Body Displacement

Eigenvalues \& Eigenvectors

$$
\begin{array}{ll}
{\left[\begin{array}{cc}
1-\lambda & -1 \\
-1 & 1-\lambda
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=0} \\
(1-\lambda)^{2}-1=0 \Rightarrow \lambda^{2}-2 \lambda=0 \\
\Rightarrow \lambda_{1}=0 ; & \lambda_{2}=2\left(\frac{c A}{l_{e}}\right) \\
\underline{v}=\left[\begin{array}{c}
a \\
a
\end{array}\right] & \underline{v}=\left[\begin{array}{c}
+a \\
-a
\end{array}\right]
\end{array}
$$

Deformation anode

- $\left[K^{G}\right]_{f f}$ is positive definite $\left.(\lambda>0)\right] \Rightarrow$ Unique Solution (because Rigid body modes are ruled out by $B C_{s}$).

Convergence and Accuracy of the FE solution

- $u^{h}\left(x_{e}\right)=u\left(x_{e}\right)$: Exact at nodes (only in (-D)
- Pointuise error in the solution:

$$
e(x) \equiv u^{h}(x)-u(x)
$$

One can show (using Taylor-semies):

$e(x) \approx O\left(h^{2}\right)$ for linear polynomial $\left(\mathbb{P}^{1}\right) F E$ basis.
where $h=l_{e}$ (element-size).
ie. if you "refine" your 1-D "mesh" by doubling the nodes ($\frac{h}{2}$) then the pointurise error will go down by 4 times.

- Pointurise error in the derivative (stresses/strains)

$$
e^{\prime}(x) \approx O(h)
$$

However, there are points in the element where $e^{\prime}\left(x_{0}\right) \approx O\left(h^{2}\right)$

The fact that (in 1-D) the displacement is exact at the nodes and stresses at certain o points show higher convergence is called super-convergence.
In general, if one uses polynomial approximation of degree " p " ie. $\left(\mathbb{I}^{p}\right)$, then

$$
\begin{aligned}
& e(x) \approx o\left(h^{p+1}\right) \\
& e^{\prime}(x) \approx o\left(h^{p}\right)
\end{aligned}
$$

In contrast with weighted residuals, sometimes it is possible to derive the weak form from Variational (Energy) Principles.
Example
$\{$ Ref- Teddy Ch $2.3 ; 2.5$ Hjelmstad ch 9

Minimization of Potential Energy

$$
\begin{aligned}
& \pi=U+W \\
& \pi=1 / 2 k d^{2}+(-m g d)
\end{aligned}
$$

Minimum $\Rightarrow \frac{\partial \pi}{\partial \alpha}=0$

$$
\Rightarrow k d=m g
$$

$$
\Rightarrow d=\frac{m g}{k}
$$

Now lets consider:

$$
C u^{\prime \prime}+b=0 \quad \text { for } x \in(0, l)
$$

$$
u(0)=u_{0} ; \quad C u^{\prime}(l)=t_{R}
$$

Total Potential Energy

$\pi=\underset{\downarrow}{U}+W \xrightarrow{W}$ Potential due to conservative body forces Strain energy
Recall

$$
\begin{aligned}
& U(u)=\int_{0}^{l} \frac{1}{2} \sigma \epsilon \cdot d x=\int_{0}^{l} 1 / 2 c\left(u^{\prime}\right)^{2} d x \\
& W(u)=\int_{0}^{l}-u b d x \quad-u(l) t_{l}+u(0) t_{0}
\end{aligned}
$$

Thus

$$
\left.\pi(u)=\int_{0}^{l}\left[1 / 2 C\left(u^{\prime}\right)^{2}-u b\right] d x\right]
$$

To minimize the Potential Energy $\Pi(u)$ wot $u(x)$.
For this we need:
Directional Derivative (Gateaux Derivative)
For a scalar functional $V(u)$

$$
D J(u) \cdot \bar{u} \sum_{\substack{\hat{\imath} \\ \text { defined as }}}\left[\left.\frac{d}{d \epsilon}[J(u+\epsilon \bar{u})]\right|_{\epsilon=0}\right.
$$

eg.
Consider the function

$$
f(\underline{x})=\underline{x} \cdot \underline{x}=x_{i} x_{i}
$$

Gradient of $f: \nabla_{\underline{x}} f=\left[\begin{array}{l}\partial f / \partial x_{1} \\ \partial f / \partial x_{2} \\ \partial f / \partial x_{3}\end{array}\right]=2 \underline{x} . \begin{aligned} & \underline{x} \text { is radial) }\end{aligned}$

Directional derivative

$$
\begin{aligned}
D f(\underline{x}) \cdot \underline{y} & =\left.\left[\frac{d}{d \epsilon} f(\underline{x}+\epsilon \underline{y})\right]\right|_{\epsilon=0}=\left.\left[\frac{d}{d \epsilon}(\underline{x}+\epsilon \underline{y}) \cdot(\underline{x}+\epsilon \underline{y})\right]\right|_{\epsilon=0} \\
& =\left[\left.\frac{d}{d \epsilon}\left(\underline{x} \cdot\left(\underline{x}+2 \epsilon \underline{x} \cdot \underline{y}+\epsilon^{2} \underline{y} \cdot \underline{y}\right)\right]\right|_{\epsilon=0}=\left[2 \underline{x} \cdot \underline{y}+\left.2(\underline{\varepsilon} \underline{y} \cdot \underline{y}]\right|_{\epsilon=0}\right.\right. \\
& =2 \underline{x} \cdot \underline{y}=\left(\nabla_{0}, f\right) \cdot \underline{y}
\end{aligned}
$$

Similarly for functions:-

$$
\begin{aligned}
& D \pi(u) \cdot \bar{u}=\left.\left[\frac{d}{d \epsilon}[\pi(u+\epsilon \bar{u})]\right]\right|_{\epsilon=0}=\left[\left.\frac{d}{d \epsilon}\left[\int_{0}^{l} \frac{1}{2} c\left(u^{\prime}+\epsilon \overline{u^{\prime}}\right)^{2}-(u+\epsilon \bar{u}) b d x\right]\right|_{\epsilon=0}\right. \\
& \\
& =\left[\int_{0}^{l} 1 / 2 c \frac{d}{d \epsilon}\left(u^{\prime^{2}}+2 \epsilon u^{\prime} \bar{u}^{\prime}+\epsilon^{2} \bar{u}^{\prime 2}\right)-\left.\frac{d}{d \epsilon}(u b+\epsilon \bar{u} b) d x\right|_{\epsilon=0}\right. \\
& \\
& =\underbrace{W_{1}}_{W_{I} c w^{\prime} \bar{u}^{\prime} d x}-\underbrace{\int_{0}^{l} \bar{u} b d x}_{W_{E}}-\underbrace{-u(l) t_{l}+u(0) t_{0}} \\
&
\end{aligned}
$$

Since we have obtained

$$
D \Pi(u) \cdot \bar{u}=G(u, \bar{u})=\int_{0}^{l} c u^{\prime} \bar{u}^{\prime} d x-\int_{0}^{l} \bar{u} b d x-\bar{u}(l) t_{l}+u(0) t_{0}
$$

Integrate by parts (in veverse-to unbalance the derivatives):

$$
\begin{aligned}
& =-\int_{0}^{l} \bar{u} C u^{\prime \prime} d x+\left[\bar{u} C u^{\prime}\right]_{0}^{l}-\int_{0}^{l} \bar{u} b d x-\bar{u}(l) t_{l}+u(0) t_{0} \\
& =-\int_{0}^{l} \bar{u}\left(C u^{\prime \prime}+b\right) d x+\bar{u}(l) \underbrace{\left[C u^{\prime}(l)-t_{l}\right]}_{\text {Natural } B C Q l}+\bar{u}(0) \underbrace{\left[C u^{\prime}(0)+t_{0}\right]}_{\text {Nat } B C Q}
\end{aligned}
$$

Nous if

$$
D \pi(u) \cdot \bar{u}=G(u, \bar{u})=0 \quad \text { for all : } \forall \bar{u}(x) \in H_{0}^{1}(0, l)
$$

then
(5) $C u^{\prime \prime}+b=0$ at all points x in $(0, l)$
(5) and

$$
\operatorname{Cu}^{\prime}(l)=\sigma(l)=t_{l} \quad \text { at } \quad x=l
$$

i.e. we get the governing differential equation (GDE) back from the variational principle.
In general, if you have "some" TIu)
ie. some "energy" functional
then, the governing differential equation corresponding to $\pi(\mu)$ is called its Euler equation (or Euler-Lagrange equation).
So,

$$
\Pi(u) \quad D \pi(u) \cdot \bar{u}=\begin{align*}
G(u, \bar{u})=0 & \longrightarrow \bar{u}
\end{align*} \quad \begin{array}{r}
C u^{\prime \prime}+b=0 \\
\sigma(l)=t_{l}
\end{array}
$$

MW
(5)

Existence of a Variational Principle is decided with the help of the Vainberg's Theorem:

Given a functional $G(u, \bar{u})$: (Existence of $\pi(u)$ or (E))
If

- $G(\cdot, \cdot)$ is linear in the second argument:
ie $\quad G\left(u,\left(\alpha \bar{u}_{1}+\beta \bar{u}_{2}\right)\right)=\alpha G\left(u, \bar{u}_{1}\right)+\beta G\left(u, \bar{u}_{2}\right)$
- Directional derivative is symmetric in the second argument:
ie

$$
\begin{aligned}
& D G\left(u, \bar{u}_{1}\right) \cdot \bar{u}_{2}=D G\left(u, \bar{u}_{2}\right) \cdot \bar{u}_{1} \\
& \\
& \left\{\text { where }\left.D G\left(u, \bar{u}_{1}\right) \cdot \bar{u}_{2} \equiv\left[\frac{d}{d \epsilon} G\left(\left(u+\epsilon \bar{u}_{2}\right), \bar{u}_{1}\right)\right]\right|_{\epsilon=0}\right\}
\end{aligned}
$$

Then

$$
\pi(u)=\int_{0}^{1} G(t u, u) d t+c
$$

such that $D \Pi(u) \cdot \bar{u}=G(u, \bar{u})$
Example: Consider the Weak form for the 1-D problem:-

$$
G(u, \bar{u})=\int_{0}^{l} \bar{u}^{\prime} C u^{\prime} d x-\int_{0}^{l} \bar{u} b d x-\bar{u}(l) t_{l}
$$

Check:

$$
\begin{align*}
G\left(u,\left(\alpha \bar{u}_{1}+\beta \bar{u}_{2}\right)\right) & =\alpha G\left(u, \bar{u}_{1}\right)+\beta G\left(u, \bar{w}_{2}\right) \\
\cdot D G\left(u, \bar{u}_{1}\right) \cdot \bar{u}_{2} & \left.=\frac{d}{d \epsilon}\left[\int_{0}^{l} \bar{u}_{1}^{\prime}\left(c\left(u^{\prime}+\epsilon \bar{u}_{2}^{\prime}\right)\right) d x-\int_{0}^{l} \bar{u}_{1} b-\bar{u}_{1} d\right) t_{l}\right]\left.\right|_{\epsilon-0} \\
& =\int_{0}^{l} \bar{u}_{1}^{\prime} c \bar{u}_{2}^{\prime} d x \\
\& D G\left(u, \bar{u}_{2}\right) \cdot \bar{u}_{1} & =\left.\frac{d}{d \epsilon}\left[\int_{0}^{l} \bar{u}_{2}^{\prime}\left(c\left(u^{\prime}+\epsilon \bar{u}_{1}^{\prime}\right)\right) d x-\int_{0}^{l} \bar{u}_{2} b-\bar{u}_{2}(l) t_{l}\right]\right|_{\epsilon-0} \\
{[(u) \text { exists: }} & =\int_{0}^{l} \bar{u}_{2}^{\prime} C \bar{u}_{1}^{\prime} d x=\circledast
\end{align*}
$$

Thus $\Pi(u)$ exists:

$$
\begin{aligned}
& \pi(u)=\int_{0}^{1} \underbrace{G(t u, u)} d t+\varnothing \\
& =\int_{0}^{1}[\underbrace{\int_{0}^{l} u^{\prime} C(t u)^{\prime} d x-\int_{0}^{l} u b d x-u(l) t_{l}}] d t \\
& =\underbrace{\left(\int_{0}^{1} t d t\right)}\left[\int_{0}^{l} u^{\prime} C u^{\prime} d x\right]-\int_{0}^{l} u b d x-u(l) t_{l} \\
& \Pi(u)=\left[\int_{0}^{l} \frac{1}{2} \in \sigma d x\right]-\int_{0}^{l} u b d x-u(l) t_{l} \\
& \int_{0}^{1} t d t=\left[\frac{t^{2}}{2}\right]_{0}^{1}=\frac{1}{2}
\end{aligned}
$$

Hamilton's Principle for dynamics
Consider

Equation of motion: (Dynamic Equilibrium $F=m a$)
FBI:

$$
\underset{\rightarrow a}{k u} \rightarrow f \quad m \ddot{u}+k u-f=0
$$

Using Energy principles (Variational methods):

$$
\begin{aligned}
& u\left(t_{1}\right) \stackrel{\cdot}{u(t)} u\left(t_{2}\right) \\
& k(\dot{u})=1 / 2 m \dot{u}^{2} \quad ; \quad \pi(u)=\frac{1}{2} k u^{2}-f \cdot u
\end{aligned}
$$

Define: Lagrangian $\mathcal{L}(u, \dot{u})=K(\dot{u})-\Pi(u)$
Hamiton's Principle:

$$
\begin{aligned}
& \text { Principle: } D\left[\int_{t_{1}}^{t_{2}} \mathcal{L}(u, \dot{u})\right] \cdot \bar{u}=0 \quad \forall \bar{u}(t) \\
& \Rightarrow \frac{d}{d \epsilon}\left[\left.\int_{t_{1}}^{t_{2}}\left[\frac{1}{2} m(\dot{u}+\epsilon \dot{\bar{u}})^{2}-\frac{1}{2} k(u+\epsilon \bar{u})^{2}-f \cdot(u+\epsilon \bar{u})\right] d t\right|_{\epsilon=0}=0\right. \\
& \Rightarrow \int_{t_{1}}^{t_{2}}(m \dot{u} \dot{\bar{u}}-k u \bar{u}-f \bar{u}) d t=0 \quad \forall \bar{u}(t) \\
& \Rightarrow \quad \int_{t_{1}}^{t_{2}}(-\bar{u} m \ddot{u}-k u \bar{u}-f \bar{u}) d t+[m / \dot{u} \bar{u}]_{t_{1}}^{t_{2}}=0 \quad \forall \bar{u}(t) \\
& \Rightarrow \text { Integrate by parts in } t)^{m} \begin{array}{l}
\quad\left(\bar{u}\left(t_{1}\right)=\bar{u}\left(t_{2}\right)=0\right)
\end{array} \\
& \hline m+k u-f=0
\end{aligned}
$$

This is the Euler-Lagrange equation corresponding to the Lagrangian above.

Using the same Lagrangian $\mathcal{L}(u, \dot{u})=K(\dot{u})-\Pi(u)$
For 1-D problem:

$$
\sigma^{\prime}+b=\rho \ddot{u}
$$

For 2-D \& 3D problems:

$$
\operatorname{div} \underset{\sim}{\sigma}+\underline{b}=\rho \underline{\ddot{u}}
$$

In class assignment:
consider $-\frac{d}{d x}\left(u \frac{d u}{d x}\right)+f=0$ for $x \in(0, l)$
$\left.B C\left(u \frac{d u}{d x}\right)\right|_{x=0}=0 \quad$ and $u(l)=1 \div E B C$ on u

$$
\begin{aligned}
G(u, \bar{u}) & =\int_{0}^{l} \bar{u}\left(u u^{\prime}\right)^{\prime} d x-\int_{0}^{l} \bar{u} f d x \\
& =-\int_{0}^{l} \bar{u}^{\prime}\left(u u^{\prime}\right) d x+\left[\bar{u}\left(u u^{\prime}\right)\right]_{0}^{l}-\int_{0}^{l} \bar{u} f d x
\end{aligned}
$$

Does $\Pi(u)$ exist?
check $G(u, \bar{u})=-\int_{0}^{l} \bar{u}^{\prime} u u^{\prime} d x$

- Linear in \bar{u} : yes

$$
\begin{aligned}
D G & \left.D u, \bar{u}_{1}\right) \cdot \bar{u}_{2}=D G\left(u, \bar{u}_{2}\right) \cdot \bar{u}_{1} \\
& \begin{aligned}
& \text { LHS: } \\
&=\left.\frac{d}{d \epsilon}\left[-\int_{0}^{\ell} \bar{u}_{2}^{\prime}\left(u+\epsilon \bar{u}_{1}\right)\left(u^{\prime}+\epsilon \bar{u}_{1}^{\prime}\right) d x\right]\right|_{\epsilon=0} \\
&=-\int_{0}^{l} \bar{u}_{2}^{\prime}\left(u \bar{u}_{1}^{\prime}+\bar{u}_{1} u^{\prime}\right) d x=-\int_{0}^{l}(\underbrace{\bar{u}_{1}^{\prime} \bar{u}_{2}^{\prime} u}_{\checkmark}+\underbrace{\bar{u}_{1} \bar{u}_{2}^{\prime} u^{\prime}}_{x}) d x .
\end{aligned}
\end{aligned}
$$

*

$$
\begin{align*}
\text { RHS: } & =\left.\frac{d}{d \epsilon}\left[-\int_{0}^{-} \bar{u}_{1}^{\prime}\left(u+\epsilon \bar{u}_{2}\right)\left(u^{\prime}+\epsilon \bar{u}_{2}^{\prime}\right) d x\right]\right|_{\epsilon=0} \\
& =-\int_{a}^{\ell} \bar{u}_{1}^{\prime}\left(u \bar{u}_{2}^{\prime}+\bar{u}_{2} u^{\prime}\right) d x=-\int_{0}^{\ell}(\underbrace{\left(\bar{u}_{1}^{\prime} \bar{u}_{2}^{\prime} u\right.}_{\checkmark}+\underbrace{\bar{u}_{1}^{\prime} \bar{u}_{2} u^{\prime}}_{\times}) d x
\end{align*}
$$

For them to he equal: $\int_{0}^{l} \bar{u}_{1} \bar{u}_{2}^{\prime} u^{\prime} d x=\int_{0}^{l} \bar{u}_{1}^{\prime} \bar{u}_{2} u^{\prime} d x$
ie $\quad \int_{0}^{\ell} \bar{u}_{2}^{2}\left[\frac{\bar{u}_{1}^{\prime} \bar{u}_{2}-\bar{u}_{1} \bar{u}_{2}^{\prime}}{\bar{u}_{2}^{2}}\right] u^{\prime} d x=0 \quad \forall \bar{u}_{1} \bar{u}_{2}$

$$
\Rightarrow \underbrace{l}_{\bar{w}} \underbrace{\int_{0}^{2}\left(\frac{\bar{u}_{1}}{\bar{u}_{2}}\right)^{\prime}}_{0} u^{\prime} d x=0 \quad \forall \begin{aligned}
& \bar{u}_{1}, \bar{u}_{2} \\
& \text { (or } \bar{\omega})
\end{aligned}
$$

ie u^{\prime} would have to be zero. Thus $\Pi(u)$ does not exist.

3-Node Quadratic 1-D Finite Element
We have developed 1-D finite elements with linear polynomials. The solution was approximated as:-

$$
\begin{aligned}
u(x) \approx u_{e}^{h}(x) & =\sum_{a=1}^{2} N_{a}^{e}(x) d_{a}^{e} \\
& =\left[N_{1}^{e}(x)\right. \\
\bar{N}(x) & \left.N_{2}^{e}(x)\right]\left[\begin{array}{c}
d_{1}^{e} \\
\hdashline d_{2}^{e}
\end{array}\right]=\underset{\sim}{N} \underline{d}
\end{aligned}
$$

similarly

$$
\begin{aligned}
& \epsilon(x) \equiv u^{\prime}(x) \approx u_{e}^{\prime h}(x)=\left[N_{1}^{e}(x) \vdots N_{2}^{e^{\prime}}(x)\right]\left[\frac{d_{1}^{e}}{d_{2}^{e}}\right]=\underset{\sim}{B} \underline{d} \\
& \text { to: }
\end{aligned}
$$

$$
{\underset{\sim}{k}}^{e}=\int_{x_{e}}^{x_{e+1}}{\underset{\sim}{B}}^{\top} C \underset{\sim}{B} d x \quad \underline{f}^{e}=\int_{x_{e}}^{x_{e+1}}{\underset{\sim}{N}}^{\top} b d x
$$

If C is constant : If b is constant:

$$
{\underset{\sim}{k}}^{e}=\frac{c A}{l e}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \quad \underline{f}^{e}=b l_{e}\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]
$$

Galerkin Weak form:

$$
\underline{G}^{h}(\underline{d}, \underline{\bar{d}})=\underline{\underline{\alpha}}^{\top}(\underline{\sim} \underline{d}-\underline{f})=0 \quad \text { for all } \underline{\bar{d}}
$$

where

One can also develop higher order approximation "shape" functions. Consider a 3 node element. We can generate shape functions using Lagrange polynomials.

$$
\begin{aligned}
N_{1}^{e}(x) & =\frac{\left(x-x_{2}^{e}\right)\left(x-x_{3}^{e}\right)}{\left(x_{1}^{e}-x_{2}^{e}\right)\left(x_{1}^{e}-x_{3}^{e}\right)} \\
N_{2}^{e}(x) & =\frac{\left(x-x_{1}^{e}\right)\left(x-x_{3}^{e}\right)}{\left(x_{2}^{e}-x_{1}^{e}\right)\left(x_{2}^{e}-x_{3}^{e}\right)} \\
N_{3}^{e}(x) & =\frac{\left(x-x_{1}^{e}\right)\left(x-x_{2}^{e}\right)}{\left(x_{3}^{e}-x_{1}^{e}\right)\left(x_{3}^{e}-x_{2}^{e}\right)}
\end{aligned}
$$

Thus the approximation is

Weak form

$$
G(\underline{a}, \underline{\bar{d}})=\sum_{e=1}^{M}\left\{\underline{a}^{-} \underline{ }^{\top}\left(\underline{c}_{\sim}^{e} \underline{d}^{e}-\underline{f^{e}}\right)\right\}+\underline{d}^{-G^{\top}} \underline{f}^{N}=0 \quad \forall \underline{\bar{d}}
$$

where

$$
{\underset{\sim}{K}}_{3 \times 3}^{e}=\int_{x_{1}^{e}}^{x_{3}^{e}}{\underset{\sim}{B}}^{\top} C \underset{\sim}{B} d x \quad ; \quad f^{e}=\int_{x_{1}^{e}}^{x_{3}^{e}} \sim_{\sim}^{\top} b d x
$$

Thus

$$
\text { Thus for each element: }\left[d_{1}^{e}\right] \text { only for bubbles }
$$

$$
\left[\begin{array}{ll}
k_{11}^{e} & k_{13}^{e} \\
k_{31}^{e} & k_{33}^{e}
\end{array}\right]\left\{\begin{array}{l}
d_{1}^{e} \\
d_{3}^{e}
\end{array}\right\} \Theta\left[\begin{array}{l}
k_{12}^{e} \\
k_{32}^{e}
\end{array}\right]\left[\begin{array}{ll}
k_{22}^{e}
\end{array}\right]^{-1}\left[\begin{array}{ll}
k_{21} & k_{23}
\end{array}\right]\left[\begin{array}{l}
d_{1}^{e} \\
d_{3}^{e}
\end{array}\right]
$$

$$
\begin{aligned}
& \left.\begin{array}{ll}
\Rightarrow d_{2}^{e}=k_{22}^{e^{-1}}\left\{f_{2}^{e}-\left[\begin{array}{ll}
k_{21}^{e} & k_{23}^{e}
\end{array}\right]\left[\begin{array}{l}
d_{1}^{e} \\
d_{3}^{e}
\end{array}\right]\right\}
\end{array} \quad \begin{array}{ll}
\text { "Bubble functions } \\
d_{3}^{e}
\end{array}\right] \quad\left[\begin{array}{ll}
K_{m m}^{e} & k_{m b}^{e} \\
k_{b m}^{e} & k_{b b}^{e}
\end{array}\right]\left[\begin{array}{l}
d_{m}^{e} \\
d_{b}^{e}
\end{array}\right]-\left[\begin{array}{c}
f_{m}^{e} \\
f_{b}^{e}
\end{array}\right] \\
& \begin{array}{l}
\text { Substitute in the remaining equations: } \\
\text { (for each element) }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& G(\underline{d}, \underline{d})=\left[\begin{array}{lll}
\bar{d}_{1}^{\prime} & \bar{d}_{2}^{\prime} & \bar{d}_{3}^{\prime}
\end{array}\right]\left(\left[\begin{array}{lll}
k_{11}^{\prime} & k_{12}^{\prime} & k_{13}^{\prime} \\
k_{21}^{\prime} & k_{22}^{\prime} & k_{23}^{\prime} \\
k_{31}^{\prime} & k_{32}^{\prime} & k_{33}
\end{array}\right]\left[\begin{array}{c}
d_{1}^{\prime} \\
d_{2}^{\prime} \\
d_{3}^{\prime}
\end{array}\right]-\left[\begin{array}{l}
f_{1}^{\prime} \\
f_{2}^{\prime} \\
f_{3}^{\prime}
\end{array}\right]\right)+ \\
& {\left[\begin{array}{lll}
\bar{d}_{1}^{2} & \bar{d}_{2}^{2} & \bar{d}_{3}^{2}
\end{array}\right]\left(\left[\begin{array}{lll}
k_{11}^{2} & k_{12}^{2} & k_{13}^{2} \\
k_{21}^{2} & k_{22}^{2} & k_{23}^{2} \\
k_{31}^{2} & k_{32}^{2} & k_{33}
\end{array}\right]\left[\begin{array}{c}
d_{1}^{2} \\
d_{2}^{2} \\
d_{3}^{2}
\end{array}\right]-\left[\begin{array}{l}
f_{1} \\
f_{2}^{2} \\
f_{3}
\end{array}\right]\right)+} \\
& \text { : } \\
& {\left[\begin{array}{lll}
\bar{d}_{1}^{M} & \bar{d}_{2}^{m} & \bar{d}_{3}^{m}
\end{array}\right]\left(\left[\begin{array}{lll}
k_{11}^{m} & k_{12}^{M} & k_{13}^{m} \\
k_{21}^{M} & k_{22}^{M} & k_{23} \\
k_{31}^{m} & k_{32}^{M} & k_{33}^{m}
\end{array}\right]\left[\begin{array}{l}
d_{1}^{m} \\
d_{2}^{m} \\
d_{3}^{m}
\end{array}\right]-\left[\begin{array}{c}
f_{1}^{m} \\
f_{2}^{m} \\
f_{3}^{M}
\end{array}\right]\right)+\underline{\bar{d}}^{\top} f^{N}=0}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
u(x) \approx u_{e}^{h}(x)=\underset{\sim}{N}{\underset{\sim}{d}}^{e} \\
\bar{u}(x) \approx \bar{u}_{e}^{h}(x)=\underset{\sim}{N} \bar{d}^{e}
\end{array}=\left[\begin{array}{l:l:l:l}
N_{1}^{e} & \vdots & N_{2}^{e} & \vdots \\
N_{3}^{e}
\end{array}\right]\left[\begin{array}{l}
d_{1}^{e} \\
d_{2}^{e} \\
d_{3}^{e}
\end{array}\right] \\
& \bar{u}(x) \approx \bar{u}_{e}^{h}(x)=N \mathcal{d}^{e} \\
& \epsilon(x) \approx u_{e}^{h^{\prime}}(x)=\underset{\sim}{B} \underline{d}^{e}
\end{aligned}
$$

In general

$$
\operatorname{d}_{m}^{e}\{(\underbrace{\left(k_{m m}^{e}-K_{m b}^{e} K_{b b}^{e-1} K_{b m}^{e}\right.}_{\left[\tilde{K}_{m m}^{e}\right]}) d_{m}^{e}-\underbrace{\left.\left(f_{m}^{b}-k_{m b}^{e} k_{b b}^{e^{-1} f_{b}^{e}}\right)\right\}}_{\left\{\tilde{f}_{m}^{e}\right\}}
$$

Now the "bubble" degrees of freedom have keen eliminated by Static condensation, we can assemble the Global equations ∞ before.

Thus $\quad \tilde{G}^{h}(\underline{d}, \underline{\bar{d}})=\underline{d}_{m}^{\top}\left({\left.\tilde{\tilde{K}_{m m}} \underline{d}_{m}-\underline{f}_{m}\right)}_{\underline{d}^{n}}\right.$
Note the Total dofs of global problem has not changed!
$\{$ Ref: Ready §4.6\} ~
These 1-D finite elements can also be applied to 2D \& 3D structures whose individual structural components (elements) behave as 1-D finite elements.

Example: Trusses:
Note:

- All connections are "pins" (2D)
"ball-socket" (3D)
- body force " b " \approx

Nodal loads f f^{N} only.

2D: planar trusses
3D: space trusses

Consider 1 truss member:
Note:

- The global coordinates of the nodes (1) \& (2) fix the direction E_{1}

(1): $\left(x_{1}, y_{1}, z_{1}\right)$
(2): $\left(x_{2}, y_{2}, z_{2}\right)$
- In $2 D \quad E_{2}$ is \perp to E_{1}

- In 3D E_{2}, E_{3} can he any 2 mutually perpendicular directions So, one must define E_{2} as the "orientation" of the element in 3D

$$
\text { Then } \underline{E}_{3}=\underline{E}_{1} \times \underline{E}_{2}
$$

Now writ $\left\{\underline{E}_{1}\right\}$ we found that $\underset{\sim}{\left.\underset{\sim}{K_{E}}\right\}} \underset{E_{1}}{e}=\frac{C A}{l_{e}}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$

So wort $\left\{\underline{E}_{1}, E_{2}\right\}$ in 2D:

$$
\underset{\sim}{\left.K_{E_{1}} \underline{E}_{2}\right\}}{ }^{e}=\frac{C A}{l e}\left[\begin{array}{ccc|cc}
(1)_{x} & (1)_{y} & (2)_{x} & (2)_{y} \\
0 & 0 & 0 & 0 \\
\hline-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

wot $\left\{E_{1} E_{2} E_{3}\right\}$ in $3 D$:

$$
\stackrel{N}{\sim}_{\left.{\underset{S E}{E}}_{e}^{e} E_{2} E_{3}\right\}}=\frac{c A}{l e}\left[\begin{array}{ccc|ccc}
(1)_{x} & ()_{y}(1)_{z} & (2)_{x} & (2)_{y} & (2)_{z} \\
1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline-1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Note that the coordinate axes are related as:
Let v be a vector:

$$
\underline{v}=v_{i}^{G} \underline{G}_{i}=v_{i}^{e} \underline{E}_{i} \text { and }\left\{v_{i}^{e}\right\}=\left[Q_{i j}\right]\left\{v_{j}^{G}\right\} \text { where } Q_{i j}=\left(\underline{G}_{j} \cdot E_{i}\right)
$$

Thus the displacement at a node:

$$
\left\{\begin{array}{l}
d_{x}^{e} \\
d_{y}^{e} \\
d_{z}^{e}
\end{array}\right\}=\left[\begin{array}{ccc}
\cos \theta_{e} & \sin \theta_{e} & 0 \\
-\sin \theta_{e} & \cos \theta_{e} & 0 \\
0 & 0 & 1
\end{array}\right]\left\{\begin{array}{l}
d_{x}^{G} \\
d_{y}^{G} \\
d_{z}^{G}
\end{array}\right\}
$$

In general

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\{\underline{d}_{1}^{e}\right. \\
\underline{d}_{2}^{e}
\end{array}\right\}=\left[\begin{array}{cc}
\underset{\sim}{Q} & 0 \\
0 & {\underset{\sim}{Q}}^{e}
\end{array}\right]\left\{\begin{array}{c}
\underline{d}_{1}^{G} \\
\underline{d}_{2}^{G}
\end{array}\right\} \quad \text { ie } \quad \underline{d}^{e}={\underset{\sim}{T}}^{e} \\
& \text { mat rotation matrix. }\left(\underset{\sim}{Q}{\underset{\sim}{Q}}^{\top}={\underset{\sim}{Q}}^{\top}=\underset{\sim}{I}\right)
\end{aligned}
$$

Substitute in the weak form (for trusses):

$$
\widetilde{G}^{h}(\underline{d}, \underline{d})=\sum_{e=1}^{M} \underline{d}^{e^{T}}\left({\underset{\sim}{k}}^{e} \underline{d}^{e}-\underline{f}^{e}\right)+\underline{\bar{d}}^{G^{T}} \underline{f}^{N}
$$

Before we can "Assemble" the equations, we need to convert the element dofs to global elofs.
ie

$$
\begin{aligned}
& \tilde{G}^{h}(\underline{d}, \underline{d})=\underline{d}^{-G^{T}}\left({\underset{\sim}{k}}^{G} \underline{d}^{G}-\underline{f}^{N}\right)=0 \quad \text { for all } \underline{\bar{d}}
\end{aligned}
$$

where

$$
\underset{\sim}{K}=\underset{e=1}{M}\left\{{\underset{\sim}{\sim}}^{{\underset{N}{e}}^{K}} \underset{\sim}{e}{\underset{\sim}{\sim}}^{e}\right\}
$$

