Governing equations in 3 D :

$$
\begin{align*}
& \sqrt{\operatorname{div}} \underset{\sim}{s}+\underline{b}=\underline{0} \\
& \underset{\sim}{S}={\underset{\sim}{s}}^{\top} \\
& \forall x \in \phi(B) \\
& \forall \underline{x} \in \phi(B) \\
& \text { (S) } \underset{\sim}{\epsilon}=1 / 2\left(\underset{\sim}{\nabla} \underset{\sim}{u}+\underset{\sim}{\nabla}{\underset{\sim}{v}}^{\top}\right) \\
& \text { (SD) } \quad \forall \underline{x} \in \phi(B) \\
& \underset{\sim}{S}=\lambda \operatorname{tr}(G) \underset{\sim}{I}+2 \mu \in-(S S) \forall x \in \phi(B) \\
& \underline{u}=\underline{u}_{D} \quad \forall \underline{x} \in \phi\left(A_{D}\right) \\
& \underline{t}_{(\underline{n})}=\underline{\sim} \underline{n}=\underline{h}_{N}
\end{align*}
$$

Find displacement field $\boldsymbol{u}(\boldsymbol{x})$, strain field $\varepsilon(\boldsymbol{x})$, and stress field $\mathbf{S}(\boldsymbol{x}) \quad ; \quad \underline{u}(\underline{x}) \in H^{1}(\varnothing(B))$ that satisfy SD and SS relationships above for all \boldsymbol{x}, and $\boldsymbol{u}(\boldsymbol{x})=\boldsymbol{u}_{\mathrm{D}}$ on $\phi\left(\mathrm{A}_{\mathrm{D}}\right) E B C$ and $G(\underline{u}, \underline{\underline{u}})=0 \quad \forall \quad \underline{u}(\underline{x}) \in H_{E}^{1}(\phi(B))$
(w)
(PaW)
where $G(\underline{u}, \underline{\bar{u}})=\underbrace{\int_{\Omega=\phi(B)}^{\bar{E}}: \underset{\sim}{S}}_{W_{I}} d \Omega-\underbrace{\int_{\Omega=\phi(B)}^{\int_{\bar{u}}} \underline{\underline{b}} d \Omega-\int_{I_{N}=\phi\left(A_{N}\right)}^{\underline{u}} \cdot \underline{t}(\underline{n})}_{-W_{E}} d \Gamma$

Simplified (little) BVP in 1D:
$\left[\sigma^{\prime}+b=0 \quad \forall x \in(0, l)\right.$
(s)

$\begin{array}{lllll}\text { Find } & \omega(x) \in H^{\prime}(0, l) & \text { such that } u(0)=u_{0} \\ \text { W. } & \text { and } & G(\sigma, \bar{u})=0 & \forall & \bar{u}(x) \in H_{E}^{\prime}(0, l) \\ & l & l\end{array}$ where $G(\sigma, \bar{u}) \equiv \underbrace{\int_{0}^{l} \bar{u}^{\prime} \sigma d x}_{W_{I}}-\underbrace{\left[\int_{0}^{l} \bar{u} b d x+\bar{u}(l) t_{l}\right]}_{W_{E}}$

Recall Big Picture:

$$
\begin{align*}
& \Rightarrow \underline{a}^{\top}[\underset{\sim}{\underset{\sim}{a}} \underline{\underline{a}}-\underline{f}]=0 \quad \forall \underline{\bar{a}}
\end{align*}
$$

The Ritz Method
(W) form of the problem is still infinite dimensional. Introduce approximation:
(Assume a certain form of the solution)

$$
u(x) \cong u^{h}(x)=\sum_{i=1}^{N} a_{i} h_{i}(x)+h_{0}(x)-
$$

$$
\begin{gathered}
\text { Discrete unknown }{ }^{=}\left[\begin{array}{llll}
a_{1} & a_{2} \ldots a_{N}
\end{array}\right]\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
\vdots \\
h_{N}(x)
\end{array}\right]- \\
U(x) \cong
\end{gathered}
$$

h : smooth enough : complete

$$
\left\{n_{i}\right\}_{i=1: N} \subset H_{E}^{1}(0, l)
$$

Note: Essential $B C u(0)=u_{0}$ is satisfied by $h_{0}(x)$
Examples of $h_{i}(x)$:

- Polynomials $\left\{1, \frac{x}{l},\left(\frac{x}{l}\right)^{2}, \cdots\right\}$
- Trigonometric $\left\{1, \sin \left(n \pi \frac{x}{l}\right), \cos \left(n \frac{\pi x}{l}\right)\right\} \quad n=1,2,3 \ldots$
- Piecewise Polynomial (FE)

What about $\bar{w}(x)$?
Galerkin Approximation $\rightarrow \bar{u}(x) \in H_{E}^{1}(0, l) \quad$ \{same space as $\left.u(x)\right\}$

$$
\begin{aligned}
& \bar{u}(x) \cong \bar{u}^{h}(x)=\sum_{i=1}^{N} \bar{a}_{i} h_{i}(x) \\
& \text { arbitrary }=\left[\begin{array}{llll}
\bar{a}_{1} & \bar{a}_{2} & \ldots & \bar{a}_{N}
\end{array}\right]\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
h_{N}(x)
\end{array}\right] \quad\left\{\begin{array}{l}
\text { Petrov-Galerkin: } \\
\text { if different space }
\end{array}\right\} \\
& \bar{u}(x) \approx \bar{u}^{h}(x)=\bar{a}^{\top} h(x)
\end{aligned}
$$

$$
\bar{u}(x) \approx \bar{u}^{h}(x)=\underline{a}^{\top} \underline{h}(x)
$$

Note for ALL $\left\{\bar{a}_{i}\right\}$
Substitute the approximations:
Discretized Galerkin Form:
Find $\quad \underline{a}=\left\{\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right\}$
such that:
(G)

$$
\begin{aligned}
& \widetilde{G}^{h}(\underline{a}, \overline{\bar{a}}) \equiv \int_{0}^{l}(\underbrace{\left(\underline{\bar{a}}^{\top} \underline{h}\right)^{\prime}}_{\bar{u}^{h^{\prime}}} C(\underbrace{\left(\underline{a}^{\top} \underline{h}+h_{0}\right)^{\prime}}_{u^{h^{\prime}}} d x-\int_{0}^{l} \underbrace{\left(\underline{\underline{a}}^{\top} \underline{h}\right)}_{\bar{u}^{h}} b d x-\underbrace{\left(\underline{\bar{a}}^{\top} \underline{h}(l)\right.}_{\bar{u}^{h}(l)})\left(t_{l}\right) \\
& G^{h}(\underline{a}, \underline{\bar{a}})=0 \quad \text { FOR ALL } \underline{\bar{a}}
\end{aligned}
$$

This is called the discretized Galerkin Form (G)
Note

$$
\Leftrightarrow \frac{\text { Approx }}{\approx}
$$

Upon simplification:

$$
\begin{aligned}
\tilde{G}^{h}(\underline{a}, \bar{a})=\underbrace{\underline{a}^{K}}_{\underline{a}^{\top}} \underline{\sim} \underline{a}\left[\int_{0}^{l} C \underline{h}^{\prime} \underline{h}^{\top} d x\right] \underline{a} & +\underline{a}^{\top}\left\{\int_{0}^{l} \underline{h}^{\prime} C h_{0}^{\prime} d x\right\} \\
& -\underline{a}^{\top}\left\{\int_{0}^{l} \underline{h} b d x\right\}-\underline{a}^{\top}\left\{\underline{h}(l) t_{l}\right\}
\end{aligned}
$$

ie.

$$
\widetilde{G}^{h}(\underline{a}, \bar{a})=\underbrace{\bar{a}^{\top}(\underbrace{(\underset{\sim}{a}-\underline{f})}_{\sim}}_{\underline{g}(\underline{a})}=0 \quad \underline{\bar{a}}^{\top} \underline{f}
$$

Note:

- This equation would he satisfied For ALL \underline{a}^{\top}

$$
\text { if } \quad \underline{g}(\underline{a}) \equiv(K \underline{a}-\underline{f})=\underline{0}
$$

- For linear problems, this may be simply solved as:

$$
\underline{a}=[\underset{\sim}{k}]^{-1} \underline{f}
$$

- For Non-linear problems, we must use a Neuton-type iterative method:

$$
g(\underline{a})=\left(\underline{f}_{\text {int }}(\underline{a})-\underline{f}\right)=0
$$

(i) Initialize iterations $i=0$

Assume a solution \underline{a}_{0}
(ii) Loop until $\left\|\frac{\underline{g}\left(\underline{a}_{i}\right)}{\underline{g}_{0}}\right\|<\epsilon_{\text {toll }}$ AND $\left\|\frac{\Delta \underline{a}_{i}}{\underline{a}_{i}}\right\|<\epsilon_{\text {bol }}$

$$
\left.\underline{g}\left(\underline{a}_{i+1}\right) \approx \underset{i+c \mid}{i+\underline{t e r a t i o n}^{g}} \underset{\underline{q}}{\downarrow} \underline{a}_{i}\right)+\left[\frac{\partial \underline{g}\left(\underline{a}_{i}\right)}{\partial \underline{a}}\right]\left\{\Delta \underline{a}_{i}\right\}
$$

We want

$$
\underline{g}\left(\underline{a}_{i+1}\right) \rightarrow \underline{0} \Rightarrow\left\{\Delta \underline{a}_{i}\right\}=\left[\frac{\partial \underline{g}\left(\underline{a}_{i}\right)}{\partial \underline{a}}\right]^{-1}\left\{-\underline{g}\left(\underline{a}_{i}\right)\right\}
$$

$$
\underline{a}_{i+1}=\underline{a}_{i}+\Delta \underline{a}_{i}
$$

(iii) Report convergence and approximate solution \underline{a}_{i}.

Example: 1D Problem:

Note: Exact solution: $\sigma(l)-\sigma(x)=\int_{x}^{l}-b(x) d x=\int_{x}^{l}-b_{0} \sin \left(\frac{x \pi}{L}\right) d x$

$$
\begin{aligned}
& \Rightarrow \sigma(x)=-\frac{b_{0} L}{\pi}\left[\cos \left(\frac{x \pi}{L}\right)\right]_{0}^{l}+t_{L}=\frac{b_{0} L}{\pi}\left(\cos \left(\frac{x \pi}{L}\right)+1\right)+t_{L} \\
& u(x)-u(0)=\int_{0}^{x} \frac{1}{C} \sigma(x) d x \Rightarrow u(x)=u_{0}+\frac{b_{0} L}{\pi C}\left(\frac{L}{\pi} \sin \left(\frac{x \pi}{L}\right)+x\right)+\frac{t_{2}}{C} x
\end{aligned}
$$

Recall:
Find $u(x) \in H^{\prime}(0, l)$ such that $u(0)=u_{0} E B C$
$P \vee W$ and $G(\sigma, \bar{u})=0 \quad \forall \quad \bar{u}(x) \in H_{E}^{\prime}(0, l)$
(v):

$$
\text { where } G(\sigma, \bar{u}) \equiv \underbrace{\int_{0}^{\ell} \bar{u}^{\prime} \sigma d x}_{W_{I}}-\underbrace{\left[\int_{0}^{\ell} \bar{u} b d x+\bar{u}(l) t_{l}\right]}_{W_{E}}
$$

(G) Assume $u(x) \cong h_{0}(x)+\underline{a}^{\top} \underline{h}(x) ; \bar{u}(x) \cong \underline{a}^{\top} \underline{h}(x)$

Find \underline{a} such that $G^{n}(\underline{a}, \bar{a})=\underline{a}^{\top}(\underline{\sim} \underline{a}-\underline{f})=0 \quad \forall \underline{a}$
where $\underset{\sim}{k}=\int_{0}^{l} C\left[\underline{h}^{\prime} \underline{\underline{h}}^{[\tau} d x ; \quad \underline{f}=\int_{0}^{l} \underline{h} b d x+\underline{h}(l) t_{L}\right.$
Let $h_{0}(x)=u_{0} \quad \Rightarrow h_{0}^{\prime}=0$

$$
h_{i}(x)=\left(\frac{x}{L}\right)^{i} \Rightarrow h_{i}^{\prime}(x)=\frac{i}{L}\left(\frac{x}{L}\right)^{i-1}
$$

Thus

$$
\Rightarrow K_{i j}=C \int_{0}^{l} \frac{i}{L}\left(\frac{x}{L}\right)^{i-1} \cdot \frac{j}{L}\left(\frac{x}{L}\right)^{j-1} d x=C \frac{i j}{(i+j)} \frac{\left[(x)^{i+j-1}\right]_{0}^{L}}{(i+j-1)}=\frac{C}{L} \frac{i j}{(i+j-1)}
$$

 and $\quad I_{0}=2 ; \quad I_{1}=1$

Matlab code for 1D Ritz method

\%\% General 1 D Problem fixed at $\mathrm{x}=0$; free at $\mathrm{x}=\mathrm{L}$;
\% For constant Area of cross-section $=1$;
\% BUT possibly varying Young's modulus 'C(x)'
clear all; clc; close all; \% clear all the existing variables (new start)
\% Allow the user to specify the problem parameters:
name='Problem Parameters';
prompt $=\{$ 'Length of the bar (Len):', ...
'Specified displacement at $\mathrm{x}=0$: (u0):', ...
'End traction (tL):', ...
'Youngs Modulus Cmod(x):', ...
'Applied body force BodyForce(x):', ...
'Number of divisions for Trapezoidal rule (Ndiv):', ...
'Number of polynomial terms for the Ritz method (NRitz):', ...
'Exact Solution Stress s_exact (x):', ...
'Exact Solution Displacement u_exact(x):'\};
numlines=1;
\% Default options for problem parameters - uncomment one option below
\% defaultanswer=\{'10', '0', '10', '@(x) 1000 *ones (size (x))', '@(x) $10 *$ ones (size (x))', '100', '1:3', ...
\% '@(x)10*(Len-x)+tI', '@(x)u0+1/1000*(-0.5*10*x.^2+(tI+10*Len)*x)'\};

```
% defaultanswer={'10','1','10','@(x)1000+1000*(Len-x)/Len','@(x) 10+10*sin(x/Len*pi)','100','1:3', ...
```

\% '@(x)zeros (size (x))','@(x)zeros(size(x))'\};
defaultanswer=\{'10', '0', '10', '@(x) 1000*ones (size(x))','@(x)10*sin(x/Len*pi)','100','[123 4]', ..

\% Ask the user:
useranswer=inputdlg (prompt, name, numlines, defaultanswer);

Len $=$ str2num(useranswer\{1\});
$u 0=\operatorname{str} 2$ num(useranswer $\{2\}$);
$\mathrm{tL}=$ str2num(useranswer $\{3\}$);
Cmod $=$ eval (useranswer $\{4\}$);
BodyForce $=$ eval (useranswer\{5\});
Ndiv $=$ str2num(useranswer\{6\});
Ritz $=$ str2num(useranswer $\{7\}$);
s_exact $=$ eval (useranswer $\{8\}$);
$u_{\text {_exact }}=\operatorname{eval}($ useranswer $\{9\})$;
$\mathrm{dL}=\mathrm{Len} / \mathrm{Ndiv} ;$
$x=0: d L: L e n ; \% x$-locations along the length of the bar
\%\% Exact / Reference solution
\% Compute an approximate reference solution by direct numerical integration \% First obtain stress by integrating body-force from x-to-L
$s x=$ zeros (size (x));
sx(end) $=t L$;
for ii $=$ length $(x)-1:-1: 1$
xcenter $=(x(i i)+x(i i+1)) / 2$;
$s x(i i)=s x(i i+1)+B o d y F o r c e(x c e n t e r) * d L ;$
end
\% Then obtain displacement by integrating stress from $0-t o-x$ ux $=$ zeros (size (x));
ux(1) = u0;
for ii $=2:$ length (x)

$$
u(x)-u_{0}=\int_{0}^{x} \frac{1}{c} \sigma(x) d x
$$

Ch6-ApproxNumSols Page 5

Matlab code for 1D Ritz method (continued)

12/1/14 10:55 AM Z:\NAVIER\Aprakash \backslash Teaching \backslash Pu... \oneDRitzFixedFree.m 2 of 3

```
    xcenter = (x(ii-1)+x(ii))/2;
    sxcenter = (sx(ii-1)+sx(ii))/2;
    ux(ii) = ux(ii-1) + sxcenter/Cmod(xcenter)*dL;
end
%% Compute an approximate solution using the Ritz Method
% From an n-term polynomial approximation:
% uh(x) =h0 +a1* (x/L) +a2* (x/L)^^2 +a3* (x/L)^^3+\ldots+aN* (x/L)^NN
% ho = u0 (EBC)
legendcell={};
icount = 0;
plotstyle = {'b.-','g.-','r.-','m.-','c.-'};
for NRitz = Ritz
    icount = icount + 1;
    % Compute the Stiffness Matrix K(NxN) and Load Vector f(Nx1) by numerical integration
    KRitz = zeros(NRitz);
    fRitz = zeros(NRitz,1);
    for kk = 2:length(x)
        xcenter = (x(kk-1)+x(kk))/2;
        for ii = 1:NRitz
            for jj = 1:NRitz
                % Compute the K(ii,jj) term of the stiffness matrix by numerical integration
                KRitz(ii,jj) = KRitz(ii,jj) + ...
                Cmod(xcenter) * (ii*xcenter^(ii-1)/(Len^ii)) * (jj*xcenter^(jj-1)/(Len^jj)) * dL;
            end
            % Compute the f(ii) term of the load vector by numerical integration
            fRitz(ii) = fRitz(ii) + (xcenter/Len)^ii*BodyForce(xcenter) * dL;
        end
    end
    fRitz = fRitz + tL;
    % Solve for the unknown coefficients:
    aRitz = KRitz \ fRitz; % Always avoid using "inv()"
    % Compute the approximate solution for plotting:
    uRitz = u0 + zeros(size(x));
    sRitz = zeros(size(x));
    for ii = 1:NRitz
        uRitz = uRitz + aRitz(ii)*(x/Len).^ii;
        sRitz = sRitz + Cmod(x) .* ( aRitz(ii)*(ii/Len^ii) * x.^(ii-1) ) ;
    end
    % Plot the Ritz solution for displacement:
    figure(1);
    subplot(2,1,1); hold on;
    plot(x,uRitz,plotstyle{mod(NRitz-1,length(plotstyle))+1});
    subplot(2,1,2); hold on;
    plot(x,uRitz-ux,plotstyle{mod(NRitz-1,length(plotstyle))+1}); title('Difference between Numerical\boldsymbol{K}
Tntegration and Ritz solutinns')
    % Plot the Ritz solution for stress:
    figure(2);
    subplot(2,1,1); hold on;
    plot(x,sRitz,plotstyle{mod(NRitz-1,length(plotstyle))+1});
    subplot(2,1,2); hold on;
    plot(x,sRitz-sx,plotstyle{mod(NRitz-1,length(plotstyle))+l}); title('Difference between Numerical\boldsymbol{K}
Integration and Ritz solutions')
    legendcell{icount} = ['Ritz ' num2str(NRitz) ' term'];
end
```

Plot of Axial displacement

Difference between Numerical Integration and Ritz solutions

Results

Plot of Axial stresses

Difference between Numerical Integration and Ritz solutions

Summary of the method for obtaining approximate solutions:

1) Take the strong form (S) of a given GDE, and apply MWR: pre-multiply it with $\bar{u}(x)$ and integrate over the domain.
2) Obtain the weak form (W) by "integrating by pants" to balance the derivatives on $u(x)$ \& $u(x)$ and add any boundany terms to get PVW W.

Instead of starting from the strong form (S) and following

1) and 2) above, one may start from the Energy form E :

Minimize $\Pi(\underline{u})$ to $\operatorname{get} \quad D \pi(\underline{u}) \cdot \underline{\bar{u}}=G(\underline{u}, \underline{u})$: PWW(W)
3) Define the function spaces for $u(x)$ \& $\bar{u}(x)$.
4) Choose approximating functions:

$$
\begin{aligned}
& u(x) \approx u^{h}(x)=\underline{a}^{\top} \underline{h}(x)+h_{0}(x) \\
& \bar{u}(x) \approx \bar{u}^{h}(x)=\underline{a}^{\top} \underline{h}(x)
\end{aligned}
$$

5) Derive the discretized (Galerkin) weak form in terms of matrices.
6) Solve with the Newton's method or $[\underset{\sim}{K}]\{\underline{a}\}=\{\underline{f}\}$

Derivation of weak forms
(5) Strong form $C u^{\prime \prime}+b=0 \quad \forall x \in(0, l)$
(+ some $B C_{3}$)

(W)

MWR: $G(u, \bar{u})=-\int_{0}^{\ell} \bar{u}\left(c u^{\prime \prime}+b\right) \cdot d x-\bar{u}(l)\left(t_{L}-\sigma(l)\right)-\bar{u}(0)\left(t_{0}+\sigma(0)\right)$
Note: $\left\{\begin{array}{l}\bar{u} \in L_{2}(0, l)=H^{0} \\ u \in H^{2}(0, l) \text { and satisfies } E B C\end{array}\right\}$
1 BP

$$
\begin{aligned}
G(u, \bar{u})= & \left.\int_{0}^{l} \bar{u}^{\prime} c u^{\prime} d x-\left[\bar{u} C u^{\prime}\right]_{0}^{l}-\int_{0}^{l} \bar{w} b d x-\bar{u}(l)\left[t_{L}-\sigma d\right)\right]-\bar{u}(0)\left(t_{0}+\sigma_{1}(0)\right) \\
= & \int_{0}^{l} \bar{u}^{\prime} c u^{\prime} d x-\bar{u}(l) \sigma(l)+\bar{u}(0) \sigma(0)-\int_{0}^{l} \bar{w} b d x \\
& -\bar{u}(d)\left[t_{L}-\partial(l)\right]-\bar{u}(0)\left[t_{0}+0(0)\right]
\end{aligned}
$$

(W)

PYW: Find u, to such that

$$
\left\lvert\, \begin{aligned}
& \text { Note: } \\
& t_{L}-\sigma(l)(+1)=0 \\
& t_{0}-\sigma(0)(-1)=0
\end{aligned}\right.
$$

(assume $A=1$)

$$
G(u, \bar{u})=\int_{0}^{l} \bar{u}^{\prime} C u^{\prime} d x-\int_{0}^{l} \bar{u} b d x-\bar{u}(l) t_{L}-\bar{u}(0) t_{0}=0 \quad \forall \bar{u}
$$

Note: $\left\{\begin{array}{l}\bar{u}(x) \in H_{E}^{1}(0, l) \text { and HEBC } \\ u(x) \in H^{1}(0, l) \text { and satisfies } E B C\end{array}\right\}$
Approximation Spaces:
Real $u(x) \in H^{1}(0, l)$

$$
\begin{aligned}
& u(x) \in H^{\prime}(0, l) \\
& \left.\begin{array}{l}
u(x) \\
\text { must satisfy }-h_{0}(x)
\end{array}+\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots . & a_{N}
\end{array}\right]\left[\begin{array}{c}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
h_{N}(x)
\end{array}\right] \rightarrow \text { must satisfy } \begin{array}{l}
H E B C
\end{array}\right]
\end{aligned}
$$

Virtual $\bar{u}(x) \in H_{E}^{1}(0, l)$

Approximation functions
When choosing functions to approximate the real displacement $u(x)$ and the virtual displacement $\bar{u}(x)$,
Make sure that they satisfy the continuity requirements imposed by the weak form (H^{1} for PVW) and, The approximation functions $h_{i}(x)$ are complete ie. they can converge to the exact solution in the limit $i \rightarrow \infty$.

In addition, one should try to make sure that the approximation functions are sufficiently different from one another. If the functions are not sufficiently different, it can lead to poorly conditioned system of equations $\boldsymbol{K} \boldsymbol{a}=\boldsymbol{f}$

Condition number of \boldsymbol{K}

$$
\rho(\underset{\sim}{K})=\frac{\mid \max \text { Eigenvalue } \lambda_{\max }(\underset{\sim}{K}) \mid}{\mid \min \text { Eigenvalue } \lambda_{\min }(\underset{\sim}{\mathcal{N}}) \mid}
$$

If condition number is large ($\sim 10^{5}$ or larger) the computer will not be able to solve the system accurately. In order to keep the condition number small, we should use $h_{i}(x)$ functions that are linearly independent.

Orthogonal vectors and Orthogonal functions
Recall vectors $\underline{v}_{1}, \underline{v}_{2}, \underline{v}_{3}$ in \mathbb{R}^{3} are called orthogonal iff

$$
\underline{v}_{i} \cdot \underline{v}_{j}=0 \quad \text { when } \quad i \neq j
$$

Examples

- $\left.e_{1}, l_{2}, e_{3}\right]$ orthorwormad
- n_{1}, n_{2}, n_{3}
- $T n_{1}, T n_{2}, T n_{3}$

The same concept extends to functions as url:
Given a set of functions: $h_{1}(x), h_{2}(x) \ldots h_{N}(x)$
The set is called orthogonal iff

Example:

$$
\int_{0}^{\pi} \underbrace{\sin (x) \cos (x)}_{\frac{\sin 2 x}{2}} d x=\frac{1}{2} \cdot \frac{1}{2}[-\cos 2 x]_{0}^{\pi}=\frac{-1}{4}\left[\begin{array}{c}
\cos 2 \pi \\
11 \\
1
\end{array} 1\right.
$$

$\Rightarrow \sin (x), \cos (x)$ are orthogonal over $(0, \pi)$

In order to get smaller (better) condition numbers for the system matrix \boldsymbol{K}, one should choose different (possibly orthogonal) approximating functions.
It is possible to generate a set of orthogonal vectors (or functions) from a given set of linearly independent vectors (or functions) which are not necessarily orthogonal to each other.

Example: Given v_{1}, v_{2}, v_{3}
Let $\underline{v}_{1}^{\perp}=v_{1}$

$$
\underline{v}_{2}^{\perp}=\underline{v}_{2}-\left(\underline{v}_{2} \cdot \frac{\underline{v}_{1}^{1}}{\left\|\underline{v}_{-1}^{1}\right\|}\right) \frac{\underline{v}_{-1}^{1}}{\left\|\underline{v}_{1}^{1}\right\|}
$$

$$
\begin{aligned}
\Rightarrow \underline{v}_{2}^{\perp} & \left.=\underline{v}_{2}-\frac{\left(\underline{v}_{2} \cdot \underline{v}_{1}^{1}\right)}{\left(\underline{v}_{1}^{1} \cdot \underline{v}_{1}^{1}\right.}\right) \cdot \underline{v}_{1}^{1} \\
\underline{v}_{3}^{\perp} & =\underline{v}_{3}-\left(\frac{\underline{v}_{3} \cdot \underline{v}_{1}^{1}}{\underline{v}_{1}^{1} \cdot \underline{v}_{1}^{1}}\right) \underline{v}_{1}^{1}-\left(\frac{\underline{v}_{3} \cdot \underline{v}_{2}^{1}}{\underline{v}_{2}^{1} \cdot \underline{v}_{2}^{1}}\right) \underline{v}_{2}^{1}
\end{aligned}
$$

In general, for \mathbb{R}^{n} :

$$
\underline{v}_{j}^{\perp}=\underline{v}_{j}-\sum_{i=1}^{j-1}\left[\left(\frac{\underline{v}_{j} \cdot \underline{v}_{i}^{1}}{\underline{v}_{i}^{1} \cdot \underline{v}_{i}^{\perp}}\right) \underline{v}_{i}^{1}\right]
$$

Note:

- $\underline{v}_{j}^{\perp} \cdot \underline{v}_{k}^{\perp}=\underline{v}_{j} \cdot \underline{v}_{k}^{\perp} \frac{\left(\underline{v}_{j} \cdot \underline{v}_{k}^{1}\right)}{\left(v_{k}^{1} \cdot \underline{v}_{k}^{\perp}\right)} \frac{\left(v_{1}^{\perp} \cdot \underline{v}_{k}^{\prime}\right)}{(\text { for } k<j)}=0 \Rightarrow \underline{v}_{j}^{\perp} 1$
(orthogo To obtain orthonormal vectors:

Similarly for functions:

$$
h_{j}^{\perp}(x)=\underline{h}_{j}(x)-\sum_{i=1}^{j-1}\left[\frac{\left\langle h_{j}(x), h_{i}^{\perp}(x)\right\rangle}{\left\langle h_{i}^{\perp}(x), h_{i}^{\perp}(x)\right\rangle} h_{i}^{\perp}(x)\right]
$$

orth nomad functions:

$$
\hat{h}_{j}^{\perp}(x)=\frac{h_{j}^{\perp}(x)}{\sqrt{\left\langle h_{j}^{\perp}(x), h_{j}^{\perp}(x)\right\rangle}}
$$

Read Example 37
from Hjemistad (2005).

$$
\begin{aligned}
& g_{1}(\xi)=\xi \\
& g_{2}(\xi)=4 \xi^{2}-3 \xi \\
& g_{3}(\xi)=15 \xi^{3}-20 \xi^{2}+6 \xi \\
& g_{4}(\xi)=56 \xi^{4}-105 \xi^{3}+60 \xi^{2}-10 \xi
\end{aligned}
$$

1D Finite Element Basis
Find $u(x) \in H^{2}(0, l)$, to such that
$B C$

$$
\begin{aligned}
& \left(C u^{\prime}\right)^{\prime}+b=0 \quad \text { on } \quad x \in(0, l) \\
& u(0)=u_{0} \text { at } x=0 \\
& \sigma(l)=\left(C u^{\prime}\right)(l)=t_{l} \text { at } x=l \\
& \text { at } x=0 \\
& {\left[G(u, \bar{u})=\int_{0}^{l} \bar{u}^{\prime}\left(C u^{\prime}\right) d x-\int_{0}^{l} \bar{u} b d x-\bar{u}(l) t_{l}-\bar{u}(0) t_{0}\right.}
\end{aligned}
$$

(5) B
(W) Find $u(x) \in\left\{H^{1}(0, l)\right.$ and $\left.\widetilde{u(0)=u_{0}}\right\}$ and t_{0}

$$
G(u, \bar{u})=0 \quad \forall \underbrace{\bar{u} \in H_{E}^{1}(0, l)} \text { HEBC }
$$

Approximation (Alternative implementation of HEBC)

Real displacement Virtual	$u(x) \stackrel{N}{=}$
displacement	$\bar{u}(x) \cong$
Finite Element Basis Functions	

(Galerkin)
1D Finite Element Basis Functions

$$
\begin{aligned}
& l e=\frac{L}{N}=x_{i}-x_{i-1} \\
& h_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{x_{i}-x_{i-1}}: & x \in\left[x_{i-1}, x_{i}\right] \\
\frac{x_{i+1}-x}{x_{i+1}-x_{i}} & : x \in\left[x_{i}, x_{i+1}\right]\end{cases} \\
& h_{i}^{\prime}(x)=\left\{\begin{aligned}
\frac{1}{l_{e}} & : x \in\left[x_{i-1}, x_{i}\right] \\
-\frac{1}{l_{e}} & : x \in\left[x_{i}, x_{i+1}\right]
\end{aligned}\right.
\end{aligned}
$$

N pts: N unknowns

Note: $H^{1}(0, l)$

From the weak form (W):

$$
G(u, \bar{u})=\int_{0}^{l} \bar{u}^{\prime}\left(C u^{\prime}\right) d x-\int_{0}^{l} \bar{u} b d x-\bar{u}(l) t_{l}-\bar{u}(0) t_{0}
$$

Substitute the approximations $u(x)=\underline{a}^{\top} \underline{h}$

$$
\begin{aligned}
& \bar{u}(x)=\underline{a}^{\top} \underline{h} \\
\Rightarrow & \widetilde{G}^{h}(\underline{a}, \bar{a})=\underline{\underline{a}}^{\top}(\underline{K} \underline{a}-\underline{f})=0 \quad \forall \quad \underline{\bar{a}}
\end{aligned}
$$

where

$$
\underset{\sim}{K}=\int_{0}^{l} c \underline{h}^{\prime} \underline{h}^{\top} d x \quad \underline{f}=\int_{0}^{l} \underline{h}^{\top} b+\underline{h}^{\top}(l) t_{l}+\underline{h}^{\top}(0) t_{0}
$$

$$
\underset{\sim}{k}=\int_{0}^{l} C\left[\begin{array}{c}
h_{1}^{\prime} \\
h_{2}^{\prime} \\
\vdots \\
1 \\
h_{N}^{\prime}
\end{array}\right]\left[\begin{array}{llll}
h_{1}^{\prime} & h_{2}^{\prime} & \cdots & h_{N}^{\prime}
\end{array}\right] d x=\left[\begin{array}{ccccc}
k_{11} & k_{12} & 0 & \cdots & 0 \\
& k_{22} & k_{23} & \cdots & 0 \\
& & \cdots & \ddots & \\
\text { symmetric } & k_{N-1, N-1} & k_{N-1, N} \\
& & & k_{N N}
\end{array}\right]
$$

Note: - Diagonal terms

$$
\left.\begin{array}{rl}
K_{i i} & =\int_{0}^{l} C h_{i}^{\prime} h_{i}^{\prime} d x
\end{array}\right)=\int_{x_{i-1}}^{x_{i+1}} C h_{i}^{\prime} h_{i}^{\prime} d x \quad \text { (Local support) } \quad \begin{aligned}
&(\text { no summation) } \\
&=\int_{x_{i-1}}^{x_{i}} C\left(\frac{+1}{l_{e}}\right)\left(\frac{+1}{l_{e}}\right) d x+\int_{x_{i}}^{x_{i+1}} C\left(\frac{-1}{l_{e}}\right)\left(\frac{-1}{l_{e}}\right) d x=\frac{2 C}{l_{e}} \\
& \quad 2 \leqslant i \leqslant N-1
\end{aligned}
$$

For $i=1$ and $i=N: k_{i i}=\frac{C}{l e}$

- off diagonal terms:

$$
K_{i j}=\int_{0}^{l_{0}} C h_{i}^{\prime} h_{j}^{\prime} d x=\left\{\begin{array}{cc}
0 & \text { if }|j-i|>1 \\
{\left[\begin{array}{ccc}
1 & -1 \\
-1 & \sqrt{2}
\end{array}\right] \begin{array}{ccc}
0 & 0 & 0 \\
-1
\end{array} 0} & 0
\end{array}\right] \quad\left\{\begin{array}{cl}
0 & \text { if }|j-i|>1 \\
\int_{x_{i}}^{x_{i+1}} c\left(\frac{1}{l_{e}}\right)\left(\frac{-1}{l_{e}}\right) d x \\
\text { if }|j-i|=1
\end{array} \quad \text { if }|j-i|=1\right.
$$

$$
\left.\Rightarrow[\underset{\sim}{K}]=\frac{C}{l_{e}}\left[\begin{array}{ccccc}
{\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right]} & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 2 & -1 \\
0 & 0 & {[1} & 2 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 1
\end{array}\right]\right]
$$

Similarly for the force vector

$$
\left.\begin{array}{rl}
\underline{f} & =\int_{0}^{l} \underline{h} b d x+\underline{h}(l) t_{l}+\underline{h}(0) t_{0} \\
{\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{N}
\end{array}\right]} & =\int_{0}^{l}\left[\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3} \\
h_{4} \\
h_{5}
\end{array}\right] b d x+\left[\begin{array}{l}
h_{1}(l) \\
h_{2}(t) \\
h_{3}(l)
\end{array}\right]_{0}^{0} t_{l}+\left[\begin{array}{l}
h_{1}(0) \\
h_{2}(0) \\
\left.h_{4}(t)\right]_{1} \\
h_{5}(l) \\
h_{4}(0)
\end{array}\right]_{1}^{1} t_{0} t_{0} \\
h_{5}(0)
\end{array}\right]
$$

Note:

$$
\begin{aligned}
& \overbrace{}^{\substack{1 / 2 l e_{i-1} \\
\prime \prime}} \overbrace{x_{i+1}}^{\frac{1}{2} l e_{i}} \\
& \overbrace{x_{i+1}}^{1 / 2 l e_{i}} \xrightarrow[l_{e_{i-1}} l e_{i}]{x_{i-1} x_{i} x_{i+1}} \\
& \Rightarrow f_{i}=b\left[\int_{x_{i-1}}^{x_{i}}\left(\frac{x-x_{i-1}}{x_{i}-x_{i-1}}\right) d x+\int_{x_{i}}^{x_{i+1}}\left(\frac{x-x_{i}}{x_{i+1}-x_{i}}\right) d x\right]+h_{i}(l) t_{l} \\
& \Rightarrow \underline{f}=b\left[\begin{array}{c}
l_{e} / 2 \\
l_{e} \\
l_{e} \\
l_{e} \\
l_{e} / 2
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] t_{l}+\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] t_{0}=\left[\begin{array}{l}
b l_{e} / 2+t_{0} \\
b l e \\
b l e \\
b l e \\
b l_{e} / 2+t_{L}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{c}{l e}\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]=\left[\begin{array}{l}
b l e \\
b l e \\
b l e \\
b l e / 2+t_{L}
\end{array}\right]-\frac{c}{b_{e}}\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right] a_{1}
\end{aligned}
$$

Solution of the linear problem:

$$
\underline{a}={\underset{\sim}{K}}^{-1} \underline{f} \quad \text { (in MATLAB : refer to code posted on Blackboard) }
$$

MATLAB Code

12/8/14 8:49 AM $\mathrm{N}: \backslash \mathrm{NAVIER} \mathrm{\backslash Aprakash} \mathrm{\backslash Teaching..}. \mathrm{\backslash OneDFE4el.m} 1$ of 2

```
% 1D Problem - 4 element FE basis
clear all; clc; close all; % clear all the existing variables (new start)
L = 10;
N=100; dL = L/N;
E = 1; A=1; dens = 1;
C = E*A;
rho = dens*A;
g = 10;
u0 = 0;
tl = 10;
x = 0:dL:L;
u_exact = -0.5* (rho*g) /C*x.^2 + (tl+rho*g*L)/C*x;
s_exact = -rho*g*x + (tl+rho*g*L);
figure(1); hold on;
plot(x,u_exact,'k-'); title('Plot of Axial displacement')
figure(2); hold on;
plot(x,s_exact,'k-'); title('Plot of Axial stresses')
Nel = 4; % dont change yet
Le = L/Nel;
xvec = 0:Le:L;
% Stiffness Matrix from a 5-shape function FE approximation
% a0 = 0 (HEBC)
K = C/Le*[[ [1 -1 0
    rrrrrrr
    0
    0
% Load vector
f = [rho*g*Le/2; rho*g*Le ; rho*g*Le ; rho*g*Le ; rho*g*Le/2+tl ]
% Solve
a = zeros(5,1);
dofspec = 1;
doffree = 2:5;
a(dofspec) = 0;
a(doffree) = K(doffree,doffree)\(f(doffree)-K(doffree,dofspec)*a(dofspec));
disp('Displacements')
a
disp('Nodal forces');
f = K*a
disp('Reaction t0'); % to = f(dofspec) - rho*g*Le/2
t0 =f(dofspec) - rho*g*Le/2
```


Element-wise computations for finite elements
Recall:

$$
G(u, \bar{u})=\int_{0}^{l} \bar{u}^{\prime} C u^{\prime} d x-\int_{0}^{l} \bar{u} b d x-\bar{u}(l) t_{e}-\bar{u}(0) t_{0}
$$

$$
x_{1} \rightarrow x_{M+1}
$$

M+1: Nodes

This integral may be written as a sum over "elements":

$$
G(u, \bar{u})=\sum_{e=1}^{M}\left[\int_{x_{e}}^{x_{e+1}} \bar{u}^{\prime} C w^{\prime} d x\right]-\sum_{e=1}^{M}\left[\int_{x_{e}}^{x_{e+1}} \bar{u} b d x\right]-\bar{w}(l) t_{e}
$$

Approximating $u(x)$ and $\bar{u}(x)$ within element " e " as:

$$
u(x) \approx u_{e}^{\omega}(x)=N_{1}^{e}(x) d_{1}^{e}+N_{2}^{e}(x) d_{2}^{e}
$$

$$
\left.\begin{array}{l}
=\underbrace{N_{2}}_{\text {Lion matrix }_{N}^{N_{1}^{e}(x)}: N_{\sim}^{e}(x)}
\end{array}\right]\left[\begin{array}{c}
d_{1}^{e} \\
\hdashline d_{1}^{e} \\
\left.d_{e}^{e}(x)\right|_{\left(x_{e}<x<x_{e+1}\right)}=\left(\frac{x_{e+1}-x}{x_{e+1}-x_{e}}\right)
\end{array}\right.
$$

and $N_{2}^{e}(x)=\left.h_{e+1}(x)\right|_{\left(x_{e}<x<x_{e+1}\right)}=\left(\frac{x-x_{e}}{x_{e+1}-x_{e}}\right)$
i.e. $u_{e}^{h}(x)=\underset{\sim}{N} \underline{d}$
shape function matrix $\underbrace{N}_{\sim}\left[\begin{array}{c}\cdots-- \\ d_{2}^{e}\end{array}\right] \rightarrow$ Element dof
where $N_{1}^{e}(x)=\left.h_{e}(x)\right|_{\left(x_{e}<x<x_{e+1}\right)}=\left(\frac{x_{e+1}-x}{x_{e+1}-x_{e}}\right)$

similarly

$$
\bar{u}(x) \approx \bar{u}_{e}^{h}(x)=\left[\begin{array}{l:c}
N_{1}^{e}(x) & N_{2}^{e}(x)
\end{array}\right]\left[\begin{array}{c}
\bar{d}_{1}^{e} \\
\hdashline \\
\hdashline d_{2}^{e}
\end{array}\right] \rightarrow
$$

$$
\bar{u}_{e}^{h}(x)=\underset{\sim}{N} \underline{d}
$$

virtual element dots
Using this approximation:

$$
u^{\prime}(x) \approx \frac{d u_{e}^{h}}{d x}=\underbrace{\left[\begin{array}{l:c}
\frac{d N_{1}^{e}}{d x} & \frac{d N_{2}^{e}}{d x}
\end{array}\right]\left[\begin{array}{c}
d_{1}^{e} \\
\hdashline d_{2}^{e}
\end{array}\right] \text { ie. } \epsilon_{e}^{h}(x)=\underset{\sim}{B} \underline{d}}_{\sim_{\sim}^{B}}
$$

and $\quad \bar{u}^{\prime}(x) \approx \frac{d}{d x} \bar{u}_{e}^{h}=\left[\begin{array}{l:c}\frac{d N_{1}^{e}}{d x} & \frac{d N_{2}^{e}}{d x}\end{array}\right]\left[\begin{array}{c}\bar{d}_{1}^{e} \\ \hdashline \bar{d}_{2}^{e}\end{array}\right]$ ie $\overline{\bar{e}}_{e}^{h}(x)=\underset{\sim}{B} \underline{\sim}$

Substituting the boxed equations into the weak form:
W)

In the expanded form:

$$
\tilde{G}^{n}\left(\{\underline{d}\}_{e=1}^{m},\{\underline{\underline{d}}\}_{e=1}^{m}\right)=0
$$

Note: $\quad d_{1}^{G}=d_{1}^{\prime}$
Global doff $d_{2}^{G}=d_{2}^{\prime}=d_{1}^{2}$

$$
\begin{aligned}
& d_{3}^{G}=d_{2}^{2}=d_{1}^{3} \\
& \vdots \\
& d_{M}^{G}=d_{2}^{M-1}=d_{1}^{M} \\
& d_{M+1}^{G}=d_{2}^{M}
\end{aligned}
$$

In addition to t_{l}, we may have Nodal loads F_{J} at any node x_{J}

This means that "Global" equation can he ASSEMBLED by taking these terms common:-

$$
\begin{aligned}
& +\left[\left(\bar{d}_{1}^{2}\right): \bar{d}_{2}^{2}\right]\left\{\left[\begin{array}{ll}
k_{11}^{2} & k_{12}^{2} \\
k_{21}^{2} & k_{22}^{2}
\end{array}\right]\left[\begin{array}{l}
d^{2} \\
d_{22}^{2}
\end{array}\right]-\left[\begin{array}{l}
f_{1}^{2} \\
f_{2}^{2}
\end{array}\right]\right\} \\
& d_{2}^{e}=d_{1}^{e+1} \\
& \begin{array}{l}
+ \\
\vdots \\
+\left[\begin{array}{lll}
\bar{d}_{1}^{M} & d_{2}^{M}
\end{array}\right]\left\{\left[\begin{array}{ll}
k_{11}^{M} & k_{12}^{M} \\
k_{21}^{M} & k_{22}^{M}
\end{array}\right]\left[\begin{array}{l}
d_{1}^{M} \\
d_{22}^{M}
\end{array}\right]-\right.
\end{array}
\end{aligned}
$$

$$
\begin{align*}
& G(u, \bar{u})=\sum_{e=1}^{M}\left[\int_{x_{e}}^{x_{e+1}} \bar{u}^{\prime} C u^{\prime} d x\right]-\sum_{e=1}^{M}\left[\int_{x_{e}}^{x_{e+1}} \bar{u} b d x\right]-\bar{w}(l) t_{e}-\bar{u}(0) t_{0} \\
& G(u, \bar{u}) \approx \tilde{G}^{n}\left(\{\underline{d}\}_{e=1}^{M},\{\underline{d}\}_{e=1}^{M}\right) \tag{w}\\
& \text { Note: }\left(\bar{u}_{e}^{\prime}\right)^{\top}=\underline{\underline{d}}_{e}^{\top}{\underset{\sim}{e}}_{e}^{\top} \tag{G}\\
& \text { element stiffness } \\
& \text { matrix } \\
& {\underset{\sim}{x}}_{\underset{e}{e}}^{k^{e}} \int_{x_{e}}^{x_{e+1}}\left[\begin{array}{l}
N_{1}^{e^{\prime}} \\
N_{2}^{e^{\prime}}
\end{array}\right]^{c\left[N_{1}^{e^{\prime}} N_{2}^{e^{\prime}}\right] d x} \\
& f_{1}^{e}=\int_{x_{e}}^{x_{e+1}}\left[\begin{array}{c}
N_{1}^{e} \\
-N_{2}^{e}
\end{array}\right] b d x
\end{align*}
$$

Discretized weak form

$$
\begin{aligned}
& \tilde{G}^{n}\left(\{\underline{d}\}_{e=1}^{m},\{\underline{d}]_{e=1}^{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { global residual } \\
& \widetilde{G}^{h}\left(\underline{d}^{G}, \underline{d}^{G}\right)=\underline{d}^{-d^{\top}}\left[\underline{g}^{G}\right]=\underline{\bar{d}}^{G}\left[{\underset{\sim}{K}}^{G} \underline{d}^{G}-\underline{f}^{G}\right]=0
\end{aligned}
$$

Finally
global nodal Loads
Boundary Conditions:
Note that our "N" functions do NOT satisfy essential boundary conditions.
To enforce $B C_{s}$, we divide our "dofs" into "free" \& "specified" say

$$
\underline{d}^{G^{\top}}=\left\{\begin{array}{llllll}
d_{1}^{G} & d_{2}^{G} & d_{3}^{G} & \ldots & \ldots & d_{M}^{G}
\end{array} d_{M+1}^{G}\right\}
$$

\Rightarrow Solve

$$
\left[K_{\sim}^{G}{ }_{f f}^{G}\right]\left\{\underline{d}_{f}^{G}\right\}=\left\{\underline{f}_{f}^{G}\right\}-\left[K_{s}^{G}\right]\left\{\underline{d}_{s}^{G}\right\} \text { for } \underline{d}_{f}^{G}
$$

and

$$
\underline{f}_{s}^{G}=\left[{\underset{\sim}{k f}}_{G}^{k_{s f}}\right]\left\{\underline{d}_{f}^{G}\right\}+\left[K_{s s}^{G}\right]\left\{\underline{d}_{s}^{G}\right\} \quad \text { (support reactions) }
$$

Postprocessing: Using \underline{d}^{G} calculate stresses in each element.

Ritz and finite element methods for 2D and 3D problems
Recall:
(

Or using the Voight notation:

$$
\begin{aligned}
& \text { Note } \epsilon=\left[\begin{array}{llllll}
\epsilon_{11} & \epsilon_{22} & \epsilon_{33} & 2 \epsilon_{12} & 2 \epsilon_{23} & 2 \epsilon_{31}
\end{array}\right]^{\top} \\
& \underline{S}=\left[\begin{array}{llllll}
S_{11} & S_{22} & S_{33} & S_{12} & S_{23} & S_{31}
\end{array}\right]^{\top}
\end{aligned}
$$

Ritz method Approximation:

$$
\begin{aligned}
& \underline{u}(\underline{x}) \cong \underbrace{\hat{h}_{0}(\underline{x})}_{E B C}+\sum_{i=1}^{N} \underline{a}_{i} \underbrace{h_{i}(\underline{x})}_{H E B C} \\
& {\left[\begin{array}{l}
u_{1}(\underline{x}) \\
u_{2}(\underline{x}) \\
u_{3}(\underline{x})
\end{array}\right] \cong\left[\begin{array}{l}
h_{01}(x, y, z) \\
h_{02}(x, y, z) \\
h_{03}(x, y, z)
\end{array}\right]+\sum_{i=1}^{N}\left[\begin{array}{l}
a_{3 i-2} \\
a_{3 i-1} \\
a_{3 i}
\end{array}\right]\left[\begin{array}{l}
{\left[\begin{array}{l}
\left.h_{i}(x, y, z)\right]
\end{array}\right]\left[\begin{array}{l}
a_{2 i-1} \\
a_{2 i}
\end{array}\right]}
\end{array}\right.} \\
& \cong\left[\begin{array}{l}
h_{01}(x, y, z) \\
h_{0_{2}}(x, y, z) \\
h_{03}(x, y, z)
\end{array}\right]+\left[\begin{array}{llll}
a_{1} & a_{4} & \cdots & a_{3 N-2} \\
a_{2} & a_{5} & \cdots & a_{3 N-1} \\
a_{3} & a_{6} & \cdots & a_{3 N}
\end{array}\right]\left[\begin{array}{c}
h_{1}(\underline{x}) \\
h_{2}(\underline{x}) \\
\vdots \\
h_{N}(\underline{x})
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \underline{u}(\underline{x}) \cong \underbrace{\underline{h_{0}}(\underline{x})}_{E B C}+\underbrace{N(\underline{x})}_{H E B C} \text { (} \underline{d} \text { Unknours to solve for } \\
& \text { Similarly } \bar{u}(\underline{x}) \cong \underset{H E B C}{\underset{\sim}{N}(\underline{x})} \text { (d) arbitrary constants }
\end{aligned}
$$

Note: It may not always be easy find such functions for complicated shapes and boundary conditions.

Approximations of strains and stresses

$$
\text { and } \underline{S} \cong \underset{\sim}{D} \underset{\sim}{B}(x) \underline{d}
$$

Discretized weak form:

Finite Element approximations
Once again FE is a special case of the Ritz method. We just use specific $F E$ shape functions for $h_{i}(\underline{x})$:

In 2D

In 3D

Note:
The "hat/tent" shape functions of finite elements are $\epsilon H^{1}\left(\Omega^{\prime}\right)$

$$
\begin{aligned}
& \widetilde{G}^{h}(\underline{u}, \bar{u})=\int_{\Omega} \underline{\epsilon}^{\top} \underline{S} d \Omega-\int_{\Omega} \underline{\bar{u}}^{\top} \underline{b} d \Omega-\int_{I_{N}} \underline{\bar{u}}^{\top} \underline{t}_{(\Omega)} d \Gamma \\
& =\underline{\bar{d}}^{\top}\left[\int_{\Omega}\left({\underset{\sim}{B}}^{\top} \underset{\sim}{\underset{\sim}{D}} \underset{\sim}{B} \underset{\sim}{B}\right) d \Omega\right] \underline{d}-\underbrace{\left[\int_{\Omega}\left({\underset{\sim}{N}}^{\top} \underline{b}\right) d \Omega+\int_{\Gamma_{N}}{\underset{\sim}{N}}^{\top} \underline{t}_{(\underline{n})} d r\right]}_{\underline{\sim}} \\
& \Rightarrow \tilde{G}^{h}(\underline{d}, \underline{\bar{d}})=\underline{d}^{\top}[\underset{\sim}{\underset{d}{d}}-\underline{f}]=0 \quad \forall \bar{a}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \underline{(x}) \cong \underset{\sim}{B}(\underline{x}) \underline{d} \\
& \bar{\epsilon}(\underline{x}) \cong \underset{\sim}{B}(\underline{x}) \underline{d}
\end{aligned}
$$

Finite Element "Element-wise" approximations 2D
2D Triangles:

d_{1}

$$
N_{1}^{e}(x, y)
$$

$$
N_{2}^{e}(x, y)
$$

$$
\begin{array}{rl|l|}
A_{1} & =x_{2} y_{3}-x_{3} y_{2} & A_{2}=x_{3} y_{1}-x_{1} y_{3} \\
B_{1} & =y_{2}-y_{3} & B_{2}=y_{3}-y_{1} \\
C_{1} & =x_{3}-x_{2} & C_{2}=x_{1}-x_{3} \\
N_{\alpha}(x, y) & =\frac{1}{2 \Delta}\left(A_{\alpha}+B_{\alpha} x+C_{\alpha} y\right) \quad
\end{array} \quad \begin{aligned}
& \alpha=1,2,3
\end{aligned} \quad \text { where } \quad \text {, } \quad \text {, }
$$

$$
A_{3}=x_{1} y_{2}-x_{2} y_{1}
$$

$$
B_{3}=y_{1}-y_{2}
$$

$$
c_{3}=x_{2}-x_{1}
$$

2D Quadrilaterals:

$$
\begin{aligned}
& N_{1}^{e}(x, y)=\widetilde{N}_{1}(x) * \tilde{N}_{1}(y) \\
& N_{2}^{e}(x, y)=\tilde{N}_{2}(x) * \widetilde{N}_{1}(y) \\
& N_{3}^{e}(x, y)=\widetilde{N}_{2}(x) * \tilde{N}_{2}(y) \\
& N_{4}^{e}(x, y)=\widetilde{N}_{1}(x) * \tilde{N}_{2}(y)
\end{aligned}
$$

Finite element "Element-wise" approximation 3D
Element types:

Tetrahedron

Hexahedron

Prisms

