Recall governing equations:

Boundary Value Problem

Example: Pure bending of a prismatic cantilever beam: (pages 250-255, Timoshenko \& Goodier)
$\begin{array}{ll}\text { Map: } & \underline{x}=\underline{z}+\underline{u}(\underline{z}) \\ \underline{x} \sim\left\{\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right\} \quad \underline{z} \sim\left\{\begin{array}{l}z_{1} \rightarrow x \\ z_{2} \rightarrow y \\ z_{3} \rightarrow z\end{array}\right\} \quad \underline{u} \sim\left\{\begin{array}{l}u=-\frac{1}{2 R}\left[z^{2}+v\left(x^{2}-y^{2}\right)\right] \\ v=-\frac{p x y}{R} \\ w=\frac{x z}{R}\end{array}\right\}\end{array}$

Note: For a cross section at $z=c$:

$$
x_{3}=c+w=c+\frac{c x}{\bar{R}}
$$

Note: For the lateral surfaces of the beam:

$$
\begin{aligned}
& x_{2}= \pm b+v= \pm b\left(1-\frac{\nu x}{R}\right) \\
& x_{1}= \pm a+u= \pm a-\frac{1}{2 R}\left[c^{2}+v\left(a^{2}-y^{2}\right)\right]
\end{aligned}
$$

$$
\text { Strains: } \underset{\sim}{E}=1 / 2\left(\underline{\nabla} \underset{\sim}{u}+\underline{\nabla} \underline{u}^{\top}\right)
$$

$$
\stackrel{\epsilon}{\sim} \sim \frac{1}{2}\left\{\left[\begin{array}{ccc}
-\frac{\nu x}{R} & \frac{\nu y}{R} & -z / R \\
-\frac{\nu y}{R} & -\frac{\partial x}{R} & 0 \\
z_{/ R} & 0 & \frac{x}{R}
\end{array}\right]+\left[\begin{array}{ccc}
-\frac{\nu x}{R} & -\frac{\nu x}{R} & z / R \\
\frac{\nu y}{R} & -\frac{\nu x}{R} & 0 \\
-z / R & 0 & x / R
\end{array}\right]\right\} \sim\left[\begin{array}{ccc}
-\frac{\nu x}{R} & 0 & 0 \\
0 & -\frac{\gamma x}{R} & 0 \\
0 & 0 & \frac{x}{R}
\end{array}\right]
$$

Stress:
$S=\frac{C \nu}{(1+\nu)(1-2 \nu)} \operatorname{tr}(\epsilon) \quad I \quad+\frac{C}{(1+\nu)} \epsilon \sim \frac{C}{(1+\gamma)}$
$\Rightarrow S_{33}=\frac{C x}{R} \quad\left\{\begin{array}{l}\left.\text { Recall : } \quad \frac{\sigma}{y}=\frac{E}{R}=\frac{M}{I}\right\}\end{array}\right.$
$\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & (1+2) \frac{x}{R}\end{array}\right]$

Note: $\operatorname{div} \underset{\sim}{S}+\underline{N}=0 \quad$ assumed "O" \quad "heck ECo.

Read Example 27 from the textbook.
(See. 101 from Timoshenko \& Goodier)
Map: $\begin{array}{rlr}\underline{x} & =\underline{z}+\underline{u}(\underline{z}) \quad \underline{u}(\underline{z}) \\ \underline{x} & =\underline{z}-\beta z_{2} z_{3} \underline{e}_{1}+\beta z_{1} z_{3} \underline{e}_{2}\end{array}$
Strains:
$\stackrel{\epsilon}{\sim} \sim \frac{1}{2} \beta\left[\begin{array}{ccc}0 & -z_{3} & -z_{2} \\ z_{3} & 0 & z_{1} \\ -z_{2} & z_{1} & 0\end{array}\right]$
\Rightarrow Stress: $\quad \underset{\sim}{s}=\lambda \underset{\sim}{-z_{2}} \quad z_{1} \quad 0\left(E_{\sim}^{-}\right) \underset{\sim}{T}+2 \mu \underset{\sim}{G} \underset{\sim}{0}$ (assumed) $=\mu \beta\left[\begin{array}{ccc}0 & 0 & -z_{2} \\ 0 & 0 & z_{1} \\ -z_{2} & z_{1} & 0\end{array}\right]$
Verify $\operatorname{div} \underset{\sim}{\mathcal{S}}+\underset{F}{ }=\underline{0}+$ check BC.
These systems of PDEs, cannot be solved analytically, in general.
We use numerical methods and use simplifying assumptions.

Simplifying Assumptions:

- Arlisymmetric problems
- Plane Stress / Plane Strain
- Beam Theory $\left.\begin{array}{l}\text { Plate/Shell Theory }\end{array}\right\}$ Structural Mechanics

Example: 2D Plane Problems

- Plane Stress

$$
\begin{aligned}
& \sigma_{33}=0 ; \quad \sigma_{13}=\sigma_{31}=0 \\
& \sigma_{23}=\sigma_{32}=0
\end{aligned}
$$

Stress-strain relationship

$$
\left\{\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right\}=\frac{E}{\left(1-\nu^{2}\right)}\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{array}\right]\left\{\begin{array}{c}
\epsilon_{x x} \\
\epsilon_{y y} \\
2 \epsilon_{x y}
\end{array}\right\}
$$

$$
\text { ie } \quad \sigma=D_{\sim}^{D} \in
$$

$$
\text { and } \epsilon_{z z}=\frac{-\nu}{E}\left(\sigma_{x x}+\sigma_{y y}\right)
$$

$$
\left\{\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right\}=\frac{E}{(1+\gamma)(1-2 \gamma)}\left[\begin{array}{ccc}
(1-\gamma) & \nu & 0 \\
\gamma & (1-\nu) & 0 \\
0 & 0 & \frac{1-2 \nu}{2}
\end{array}\right]\left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
2 \epsilon_{x y}
\end{array}\right\} \quad \text { ie } \quad \begin{array}{r}
\sigma=D_{\sim \epsilon} \in \\
\end{array}
$$

To understand how to obtain numerical solutions to complicated 2D/3D problems in general, let's first study some 1-D problems where we can usually obtain exact solutions.

Assuming small strains and displacements:

Thus Governing equations:

$$
\begin{aligned}
& \forall x \in(0, l) \\
& \forall x \in(0, l)
\end{aligned}
$$

$$
\forall x \in(0, l)
$$

$$
\text { at } x=l
$$

$$
\text { at } x=0
$$

Substituting for $\epsilon(x)$ and $\sigma(x)$:
Alternative derivation:

$$
\begin{array}{rlrl}
\left(C u^{\prime}\right)^{\prime}+b & =0 & & \forall x \in(0, l) \\
C u^{\prime}(l)(+1) & =t_{l} & \text { at } x=l \\
u(0) & =u_{0} & \text { at } x=0
\end{array}
$$

Strain (1D)

$$
\epsilon(x)=\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x)-u(x)}{\Delta x} \Rightarrow \epsilon(x)=\frac{d u}{d x}=u^{\prime}
$$

Kinematics:

Equilibrium

$$
F(x+\Delta x)=t A(x+\Delta x)
$$

$$
(b \Delta x) A\left(x+\frac{\Delta x}{2}\right)
$$

$$
\begin{aligned}
\sum F_{X}=0 & \Rightarrow \sigma A(x+\Delta x)-\sigma A(x)+b A \Delta x=0 \\
& \Rightarrow \lim _{\Delta x \rightarrow 0} \frac{\sigma A(x+\Delta x)-\sigma A(x)}{\Delta x}+b A=0 \Rightarrow \frac{d}{d x}(\sigma A)+b A=0
\end{aligned}
$$

If $A(x)=$ constant $\Rightarrow \quad \sigma^{\prime}+b=0$

$$
\begin{aligned}
& \underline{u} \sim\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \rightarrow u(x)
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{\epsilon} \sim\left[\begin{array}{lll}
\epsilon_{11} & \epsilon / 2 & \epsilon / 3 \\
\epsilon_{21} & \epsilon_{22} & \epsilon_{23} \\
\epsilon_{31} & \epsilon_{32} & \epsilon_{33}
\end{array}\right] \rightarrow \frac{\partial u_{3}}{\partial z_{3}}=u^{\prime}(x)=\frac{d u}{d x}
\end{aligned}
$$

Example. Column under self weight:

- $A(x)=$ constant $=1$ (say)
- $\sigma(x)=C \in(x):$ constant " C "
- Density : ρ
- BOos:

$$
u(0)=0 \text { on } \Gamma_{D} \quad(x=0)
$$

$$
\sigma(l)(+1)=t_{l}=-10 \text { on } \Gamma_{L} \quad(x=l)
$$

Find $\sigma(x)$; $u(x)$.

For Stresses:

$$
\begin{array}{rlr}
& \sigma^{\prime}+b=0 \\
\Rightarrow & \frac{d \sigma}{d x}=-b(x)=+\rho g & \\
\Rightarrow & \sigma(x)=\rho g x+c_{1} & \\
& & \sigma(l)(+1)=t_{L}=-10 \\
t_{L}=\sigma(l)=\rho g l+c_{1} & & G_{1}=t_{L}-\rho g l \\
& & \sigma(x)=\rho g x-\rho g l+t_{L}
\end{array}
$$

Alternatively:

$$
\begin{aligned}
& \text { tively: } \\
& \begin{aligned}
&\left.\sigma(l)-\sigma(x)=\int_{x}^{l} \rho g d x=\rho g(l-x) \quad \text { (Integrating } \int_{x}^{l} 0\right) \\
& \Rightarrow \sigma(x)=\rho g x-\rho g l+t_{L}
\end{aligned} \quad\left(t_{L}=\sigma(l)(+1)\right)
\end{aligned}
$$

For displacement:

$$
\begin{aligned}
& C u^{\prime}=\sigma(x)=\rho g x-\rho g l+t_{L} \\
& \quad \Rightarrow u(x)=\frac{1}{C}\left[\rho g \frac{x^{2}}{2}-\rho g l x+t_{L} x\right]+C / 2 \quad\left(u(0)=u_{0}=0\right)
\end{aligned}
$$

Consider the 1-D problems:
Find $\sigma(x), u(x)$:

(S) $\left[\begin{array}{rl}G D E\left[\sigma^{\prime}+b\right. & =0 \\ B C\left[\begin{array}{l}u(0)\end{array}=u_{0}\right. \\ \sigma(l)(+1) & =t_{l}\end{array}\right.$
$\forall x \in(0, l)$
on Γ_{D}
on Γ_{N}

$$
\left\{\begin{array}{l}
\text { Residual: } \\
g(x)=\sigma^{\prime}+b
\end{array}\right.
$$

This is called the strong Form (s) of the governing differential equation (GDE).
Weak forms
Define $G(\sigma, \bar{u}) \equiv \Theta\left[\int_{0}^{l} \frac{\bar{u}}{}(x) g(x) \cdot d x+\bar{u}(0)\left(t_{0}+\sigma(0)\right)+\bar{u}(l)\left(t_{l}-\sigma(l)\right)\right]$
$G(\sigma, \bar{u})$: A scalar functional (function of functions)

Input functions $0 \quad g=\sigma^{\prime}+b=(x+b)$
Scalar $+\frac{b l^{2}}{2}$
Weak form of the Problem Statement.
If for some $\sigma(x), t_{\text {。 }}$

$$
\begin{array}{ll}
e \sigma(x), t_{0} & \forall \text { for } \\
G(0, \bar{u})=0 & \forall \bar{u} \in V(0, l)
\end{array}
$$

Then \Rightarrow

$$
\begin{array}{lc}
g=\sigma^{\prime}+b=0 & \forall x \text { in }(0, l) \\
\sigma(l)(+1)=t_{l} & \text { at } x=l \\
\sigma(0)(-1)=t_{0} & \text { at } x=0
\end{array}
$$

This relies on the fundamental theorem of Calculus of Variations:
If $G(\sigma, \bar{u})=\theta[\int_{0}^{\ell} \bar{u}(x) \overbrace{g(x)}^{\sigma^{\prime}+b} d x-\bar{u}(0) \overbrace{a_{0}}^{t_{0}+\sigma(0)}-\bar{u}(l) \overbrace{a_{l}}^{t_{e}-\sigma(l)}]=0 \quad \forall \bar{u}(x) \in V(0, l)$
Then $\Rightarrow g(x)=0$ and $a_{0}=0$ and $a_{2}=0$

Proof of Fundamental theorem of calculus of variations
First, let $\bar{w}(0)=\bar{w}(l)=0$
There exists $\bar{u}(x)=g(x) \in V(0, l)$
So if $G(\sigma, \bar{u})=-\int_{0}^{l} \bar{u} g d x$

$$
=-\int_{0}^{l} g^{2} d x=0 \Rightarrow g=0 \Rightarrow \sigma^{\prime}+b=0 \quad \forall x \in(0, l)
$$

Now in addition if $\bar{u}(0), \bar{u}(l) \neq 0 \Rightarrow$
If $G(\sigma, \bar{u})=-\int_{0}^{l} \bar{u} g d x-\bar{u}(0)\left(t_{0}+\sigma(0)\right)-\bar{u}(l)\left(t_{l}-\sigma(l)\right)=0 \forall \bar{u} \in V(0, l)$

$$
\Rightarrow \quad t_{0}+\sigma(0)=0 ; \quad t_{l}-\sigma(l)=0
$$

Restriction on the choice of Function spaces $V(0, \ell)$
Fundamental Theorem of Calculus of variations restricts $\bar{u} \in V(0, l)$: \bar{u} must he square integrable
ie $\underbrace{\int_{0}^{l}(\bar{u})^{2} d x}$ must exist $_{\text {(he finite) }}$ (blue finite)
L_{2}-norm of $\bar{u}(x) \quad$ (L :Lebesgue)

Note: Dirac-delta $\delta\left(x-x_{0}\right)$ is not L_{2}.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \delta\left(x-x_{0}\right) d x=1 \\
& \int_{-\infty}^{\infty}\left[\delta\left(x-x_{0}\right)\right]^{2} d x=\frac{2}{3 \epsilon} \quad \underset{(\text { as } \in \rightarrow 0)}{\rightarrow \infty}
\end{aligned}
$$

Possible choices for function spaces：
－Square integrable：$L_{2}\left(\right.$ or $\left.\mathrm{H}^{0}\right) \longrightarrow$ Continuous functions：C^{0}
－Sq．Int．up to $1^{s^{t}}$ derivative ：H^{10} ．Continuous upto $1^{\text {st }}$ der．：C^{1}
－Sq．Int unto $m^{\text {th }}$ derivative ：$H^{m} \xrightarrow{m}$ Continuous upton $m^{\text {th }}$ der C^{m}
$C^{\infty} C C^{m} \subset H^{m} \subset . . C^{1} \subset H^{1} \subset C^{0} \subset\left(H^{0}=L_{2}\right) \quad C^{\infty}$ subset ${ }^{\prime}$ C．．．CH $\left.C L_{2}\right)$

Examples of function spaces：

（discontinuous functions are possible）
$H^{1}:$

（first derivatives square integrable）
C^{0}

continuous functions only
c^{1}

（first derivative continuous）
Example of Approximate solution to Weak form：
Recall exact solution ：

$$
\sigma(x)=\rho g x-\rho g l+t_{L}
$$

（W）Find σ ，to such that

$$
G(\sigma, \bar{u})=0 \quad \forall \bar{u} \in V(0,1)
$$

Let $\sigma=a_{0}^{\alpha}+a_{1}^{\alpha} x+a_{2}^{\alpha} x^{2}$
and $\bar{u}=\bar{a}_{0} 1+\bar{a}_{1} x+\bar{a}_{2} x^{2}$$\quad\left\{\begin{array}{l}a_{i}: \text { Unknown } \\ \bar{a}_{i} \text { ：Arbitrary }\end{array}\right.$ For $G(\sigma, u)=0$

$$
\begin{gathered}
\Rightarrow \quad-\int_{0}^{1}\left(\bar{a}_{i} \bar{h}_{i}(x)\right) \cdot\left(a_{j} h_{j}(x)\right) d x-\bar{u}(0)\left(t_{0}+\sigma(0)\right)-\bar{u}(l)\left(t_{l}-\sigma(l)\right)=0 \\
\Rightarrow \bar{a}\left[K_{\sim} a-f\right]=0 \quad \forall \bar{a}_{i} \in \mathbb{R}
\end{gathered}
$$

$\operatorname{MWR(W)G(\sigma ,\overline {u})\equiv \Theta \int _{0}^{l}\overline {u}(x)g(x)\cdot dx-\overline {u}(0)(t_{0}+\sigma (0))+\overline {u}(l)(\sigma ll)-t_{l})}$

$$
=-[\bar{u} \sigma]_{0}^{l}+\int_{0}^{0} \bar{u}^{\prime} \sigma d x-\int_{0}^{l} \bar{u} b d x \mid
$$

(Integration by pants)

$$
=\bar{u}(\theta) \sigma(\theta)-\bar{u}(l) \sigma(b)+\int_{0}^{l} \bar{u}^{\prime} \sigma d x-\int_{0}^{\imath} \bar{u} b d x
$$

$$
-\bar{u}(0)\left(t_{0}+\sigma(0)\right)+u(b)\left(v(t)-t_{l}\right)
$$

Unknown reaction st Applied traction
Weak Form: Principle of Virtual Work (PVW):
Virtual Strain

$$
\bar{u}^{\prime}=\bar{\epsilon}
$$

Internal Virtual Work
External Virtual Work.
Substituting the material model: $\quad \sigma=C \omega^{\prime}$
Weak form problem statements:
Find $u(x) \in H^{2}(0, l)$ and to such that $u(0)=u_{0}$
MW
(v)

$$
G(u, \bar{u})=0 \quad \forall \quad \bar{u}(x) \in L_{2}(0, l)=H^{0}(0, l)
$$

where $G(u, \bar{u}) \equiv-\int_{0}^{l} \bar{u}\left(\left(c u^{\prime}\right)^{\prime}+b\right) d x-\bar{u}(0)\left(t_{0}+\sigma(0)\right)-\bar{u}(l)\left(t_{l}-\sigma(l)\right)$
OR
Find $u(x) \in H^{1}(0, l)$ and to such that $u(0)=u_{0}$

$$
\begin{aligned}
& G(u, \bar{u})=0 \quad \forall \quad \bar{u}(x) \in(0) \neq H^{1}(0, l) \\
& \text { where } G(u, \bar{u}) \equiv \int_{0}^{l} \bar{u}^{\prime} u^{\prime} d x-\int_{0}^{l} \bar{u} b d x-\bar{u}(0) t_{0}-\bar{u}(l) t_{l}
\end{aligned}
$$

$$
\begin{aligned}
& G(\sigma, \bar{u})=\underbrace{\int_{0}^{-\int}\left(\int^{l} \bar{u}\left(u^{\prime}\right)^{\prime}+b\right) d x}_{l}-\bar{u}(0)\left(\sigma(0)+t_{0}\right)+\bar{u}(l)\left(\sigma(l)-t_{l}\right) \\
& =-\int_{0}^{l} d(\bar{u} \sigma)+\int_{0}^{l u} \bar{u}^{\prime} \sigma d x-\int_{0}^{l} \bar{u} b d x \\
& (\bar{u} \sigma)^{\prime}=\bar{u}^{\prime} \sigma+\bar{u} \sigma^{\prime} \\
& \left.\Rightarrow \Theta \bar{u} \sigma^{\prime}=\frac{\Theta d(\bar{u} \sigma)}{d x} \Theta\right)^{\prime} \sigma
\end{aligned}
$$

In the weak form of the problem statement: $M W R\left\{\begin{array}{l}\text { Find to and } u(x) \in H^{2}(0, l) \text { such that } u(0)=u_{0} \text { ESSENTIAL } \\ \left(\Gamma_{D}: x=0\right)\end{array}\right.$
(w): and $G(\sigma, \bar{w})=0 \quad \forall \quad \bar{u}(x) \in H^{0}(0, l)$ where $G(\sigma, \bar{u}) \equiv-\int_{0}^{l} \bar{u}\left(\sigma^{\prime}+b\right) d x-\bar{u}(0)\left(t_{0}+\sigma(0)\right)-\bar{u}(l)\left(t_{l}-\sigma(l)\right)$

$$
\left\{\begin{array}{l}
\text { Find to and } u(x) \in H^{\prime}(0, l) \text { such that } u(0)=u_{0} \\
\text { and } G(\sigma, \bar{u})=0 \quad \forall \quad \bar{u}(x) \in H^{\prime}(0, l)
\end{array}\right.
$$

$P \vee W\left\{\right.$ and $G(\sigma, \bar{u})=0 \quad \forall \quad \bar{u}(x) \in H^{\prime}(0, l)$
where $G(\sigma, \bar{u}) \equiv \underbrace{\int_{0}^{l} \bar{u}^{\prime} \sigma d x}_{W_{I}}-\underbrace{\left[\int_{0}^{l} \bar{u} b d x+\bar{u}(0) t_{0}+\bar{u}(l) t_{l}\right]}_{W_{E}}$,
Unknowns to solve for: $\sigma(x)$ \& t_{0} (or $u(x)$ \& to where $\sigma=\sigma\left(u^{\prime}\right)$) But $t_{0}=\sigma(0)(-1)$, so we can eliminate t_{0}.

Define the spaces: $\quad H_{E}^{0}(0, l) \equiv H^{0}(0, l)$ and $\bar{u}=0$ on Γ_{D}
(for virtual displacement) $H_{E}^{\prime}(0, l) \equiv H^{\prime}(0, l)$ and $\bar{u}=0$ on Γ_{D}
Thus the final weak forms are:

space for real displacement
$M W R\left\{\begin{array}{l}\text { Find } \\ M(x) \in H^{2}(0, l) \text { such that } u(0)=u_{0} E B C \\ \left(\Gamma_{0}: x=0\right)\end{array}\right.$
(W): $\left\{\begin{array}{l}\text { and } \\ G\end{array}(\sigma, \bar{u})=0 \quad \forall \quad \bar{u}(x) \in H_{E}^{0}(0, l)\right.$ space for virtual diss. where $G(\sigma, \bar{u}) \equiv-\int_{0}^{l} \bar{u}\left(\sigma^{\prime}+b\right) d x-\bar{u}(l) \frac{\left(t_{l}-\sigma C_{l}\right)}{N B C \xrightarrow{C}}\left(\Gamma_{N}: x=l\right)$
OR
$P \vee W\left\{\begin{array}{l}\left.\text { and } G(\sigma, \bar{u})=0 \quad \forall \quad \bar{u}(x) \in H_{E}^{\prime}(0, l) \nrightarrow\right]\end{array}\right.$
(w): and l space for virtual disp (HEBE)

Note:
(S) Strong form $\left(C u^{\prime}\right)^{\prime}+b=0 \quad \forall x \in(0, l) \quad$ (assume $A=1$)
(t some BC)

(2)

$$
\begin{aligned}
& \sigma(0)(-1)=t_{0}=\frac{F_{0}}{A} \quad N B C \\
& u(x=l)=u_{L} \quad \underline{E B C} \Rightarrow \bar{u}(l)=0 \\
& \text { (HsBC) }
\end{aligned}
$$

(3)

$$
\begin{aligned}
& u(x=0)=u_{0} \quad \underline{E B C} \Rightarrow \bar{u}(0)=0(H E B C) \\
& w(x=l)=u_{L} \quad \underline{E B C} \Rightarrow \bar{u}(l)=0(1+\operatorname{HEBC}) \underset{u_{0}}{\rightarrow}
\end{aligned}
$$

(4)

$$
\begin{array}{ll}
\sigma(0)(-1)=t_{0}=\frac{F_{0}}{A} & \text { NBC } \\
\sigma(l)(+1)=t_{L}=\frac{F_{L}}{A}=-\frac{K u(l)}{A} \quad \frac{\text { Mixed }}{B C}
\end{array}
$$

(5)

$$
\begin{aligned}
& \sigma(0)(-1)=t_{0}=\frac{-k u(0)}{A} \quad(\text { Mixed }) \\
& \sigma(l)(+1)=t_{l}=\frac{-k u(l)}{A} \text { (Mixed) }
\end{aligned}
$$

(6) $\left.\begin{array}{l}\sigma(0)(-1)=t_{0}=\frac{F_{0}}{A} \\ \sigma(l)(+1)=t_{L}=\frac{F_{L}}{A}\end{array}\right\}$ NBCS

Jump condition

$$
\begin{aligned}
\left.\sigma\left(x_{0}\right)\right|_{+} & \sigma\left(x_{0}\right)-k u\left(x_{0}\right)=0 \\
\Rightarrow & \Rightarrow \sigma\left(x_{0}\right) \rrbracket=k u\left(x_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sigma\left(x_{0}-\frac{\Delta x}{2}\right)(-1) A \rightarrow \sigma\left(x_{0}+\frac{\Delta x}{2}\right)(+1) A \\
& =0 \quad u\left(x_{0}\right) \longrightarrow \Delta x \\
& K u\left(x_{0}\right)
\end{aligned}
$$

In contrast with weighted residuals,
\{Ref.Hjelmstad ch 9
sometimes it is possible to derive the
weak form from Variational (Energy) Principles.
Example

Now lets consider:

$$
\begin{aligned}
& C u^{\prime \prime}+b=0 \quad \text { for } x \in(0, l) \\
& u(0)=u_{0} ; \quad C u^{\prime}(l)=t_{l}
\end{aligned}
$$

Minimization of Potential Energy

$$
\begin{aligned}
& \pi=U+W \\
& \pi=1 / 2 k d^{2}+(-m g d)
\end{aligned}
$$

Minimum $\Rightarrow \frac{\partial \pi}{\partial d}=0 \Rightarrow K d-m g=0$

$$
\Rightarrow k d=m g
$$

$\Rightarrow k d=m g$ (Equilibrium)

$$
\Rightarrow d=\frac{m g}{k}
$$

Total Potential Energy
$\pi=\underset{\downarrow}{U}+W \xrightarrow{\text { Potential due to conservative body forces \& external fractions }}$
Recall
strain energy

$$
\begin{aligned}
& U(u)=\int_{0}^{l} \underbrace{\frac{1}{2} \sigma \epsilon} \cdot d x=\int_{0}^{l} \frac{1}{2} C\left(u^{\prime}\right)^{2} d x \\
& W(u)=\int_{0}^{l}-u b d x-u(l) t_{e}-u(0) t_{0}^{\prime}
\end{aligned}
$$

Energy weak form:

$$
\begin{align*}
& D \underbrace{\pi(u)}_{\text {a }} \cdot \bar{u}=\left.\left[\frac{d}{d \epsilon}[\pi(u+\epsilon \bar{u})]\right]\right|_{\epsilon=0} \frac{d}{d \epsilon}\left[\int_{0}^{l} 1 / 2 c\left(u^{\prime}+\epsilon \bar{u}^{\prime}\right)^{2} d x-\int_{0}^{\ell}(u+\epsilon \bar{u}) b d x\right. \\
& \left.-(u(0)+\epsilon \bar{u}(0)) t_{0}-(u(l)+\epsilon \bar{u}(l)) t_{l}\right] \tag{E}\\
& =\frac{d}{d \epsilon}\left[\int_{0}^{l} \frac{1}{2} C\left(\psi^{l^{2}}+2 \notin u^{\prime} \bar{u}^{\prime}+\epsilon^{l^{2}} \bar{u}^{\prime 2}\right) d x-\int_{0}^{l}\left(x^{0}+\notin \bar{u}\right) b d x\right. \\
& \left.-\left[u_{0}(0)+\epsilon_{1} \bar{u}(0)\right] t_{0}-(u(t)+\notin \bar{u}(b)) t_{L}\right] \\
& \text { ide. } \\
& =\underbrace{\int_{0}^{l} c u^{\prime} \bar{u}^{\prime} d x}_{W_{L}} \underbrace{-\int_{0}^{l} \bar{u} b d x-\bar{u}(l) t_{l}-\bar{u}(0) t_{0}}_{W_{E}} \\
& D \Pi(u) \cdot \bar{u}=G(u, \bar{u}) \tag{E}\\
& \text { (w) PVW }
\end{align*}
$$

Integrate by parts (in reverse- to unbalance the derivatives):

$$
\begin{aligned}
& =-\int_{0}^{l} \bar{u} C u^{\prime \prime} d x+\left[\bar{u} C u^{\prime}\right]_{0}^{l}-\int_{0}^{l} \bar{u} b d x-\bar{u}(l) t_{l}-u(0) t_{0} \\
& =-\int_{0}^{l} \bar{u} \underbrace{\left(C u^{\prime \prime}+b\right)}_{(S)} d x+\bar{u}(l) \underbrace{\left[C w^{\prime}(l)-t_{l}\right]}_{\text {Natural } B C @ l}-\bar{u}(0) \underbrace{\left[C u^{\prime}(0)+t_{0}\right]}_{\text {Nat BC Q } 0}
\end{aligned}
$$

Now if

$$
D \pi(u) \cdot \bar{u}=G(u, \bar{u})=0 \quad \text { for all: } \forall \bar{u}(x) \in H_{0}^{1}(0, l)
$$

then
(5) $\left[\right.$ and $C u^{\prime \prime}+b=0$ at all points x in $(0, l)$

$$
C u n^{\prime}(l)=\sigma(l)=t_{l} \quad \text { at } \quad x=l
$$

ie. we get the governing differential equation (GDE) back from the variational principle.
In general, if you have "some" TIu)
ie. some "energy" functional
then, the governing differential equation corresponding to $\pi(\mu)$ is called its Euler equation (or Euler-Lagrange equation)

Existence of a Variational Principle is decided with the help of the Vainberg's Theorem:

Vainberg's Theorem
Given a functional $G(u, \bar{u})$ \{i.e PVW (W) or GDE strong from (s) $\}$ If $G(u, \bar{u})$ is linear in the second argument:

$$
\text { ie } \quad G\left(u,\left(\alpha \bar{u}_{1}+\beta \bar{u}_{2}\right)\right)=\alpha G\left(u, \bar{u}_{1}\right)+\beta G\left(u, \bar{u}_{2}\right)
$$

- Directional derivative is symmetric in the second argument:

$$
\text { ie } \quad D G\left(u, \bar{u}_{1}\right) \cdot \bar{u}_{2}=D G\left(u, \bar{u}_{2}\right) \cdot \bar{u}_{1}
$$

Then

$$
\left\{\text { where }\left.D G\left(u, \bar{u}_{1}\right) \cdot \bar{u}_{2} \equiv\left[\frac{d}{d \epsilon} G\left(\left(u+\epsilon \bar{u}_{2}\right), \bar{u}_{1}\right)\right]\right|_{\epsilon=0}\right\}
$$

$$
\pi(u)=\int_{0}^{1} G(t u, u) d t+\phi
$$

such that $D \Pi(u) \cdot \bar{u}=G(u, \bar{u})$

Example:
Consider the Weak form for the 1-D problem:-

(w) $\quad G(u, \bar{u})=\int_{0}^{l} \bar{u}^{\prime} C u^{\prime} d x-\int_{0}^{l} \bar{u} b d x-\bar{u}(l) t_{l}$

Vamberg's Th.

- Linearity of \bar{u}
- Symmetric in $\bar{u} \sqrt{ } \operatorname{G(\underset {\sim }{n}} \underset{\substack{u, \bar{u}_{1} \\ n}}{ } \cdot \bar{u}_{2} ?=D G\left(u, \bar{u}_{2}\right) \cdot \bar{u}_{1}$

$$
\begin{align*}
\frac{b H S}{D G}\left(u, \bar{u}_{1}\right) \cdot \bar{u}_{2} & =\left.\frac{d}{d \epsilon}\left[\int_{0}^{l} \bar{u}_{1}^{\prime} c\left(u_{1}+\notin \bar{u}_{2}\right)^{\prime} d x-\int_{0}^{l} \bar{u}_{p} b d x-\bar{u}_{1} d\right) t_{l}\right|_{\epsilon=0} \\
& =\int_{0}^{l} \bar{u}_{1}^{\prime} C \bar{u}_{2}^{\prime} d x
\end{align*}
$$

$$
\begin{align*}
& \frac{R H S}{D G}\left(u, \bar{u}_{2}\right) \cdot \bar{u}_{1}=\frac{d}{d \epsilon}\left[\int_{0}^{l} \bar{u}_{2}^{\prime} C\left(u+\phi_{1} \bar{u}_{1}\right)^{\prime} d x-\int_{0}^{l} \bar{u}_{2} b d x-\left.\bar{u}_{2}(l) t_{l}\right|_{t=0}\right. \\
&=\int_{0}^{l} \bar{u}_{2}^{\prime} C \bar{u}_{1}^{\prime} d x \\
& \Rightarrow \pi(u) \text { exists }\left.\right|_{0} \\
& \pi(u)=\int_{0}^{1} G(t u, u) d t+\ell_{0}^{1} \quad \int_{0}^{1} t d t=\left[\frac{t^{2}}{2} \int_{0}^{1}=1 / 2\right. \\
&=\int_{0}^{l}\left[\int_{0}^{l} u^{\prime} C\left((t) u^{\prime} d x-\int_{0}^{1} u b d x-u(l) t_{l}\right](d t\right. \\
& \Rightarrow \pi(u)=\int_{0}^{l} \frac{1}{2} C\left(u^{\prime}\right)^{2} d x-\int_{0}^{l} u b d x-u(l) t_{l}
\end{align*}
$$

Consider

Equation of motion: (Dynamic Equilibrium $F=m a$)
FBI:

$$
\underset{\rightarrow a}{k u f} \quad m \ddot{u}+k u-f=0
$$

Using Energy principles (Variational methods):

$$
\begin{aligned}
& u\left(t_{1}\right) \cdot u(t) \quad u\left(t_{2}\right) \\
& k(\dot{u})=\frac{1}{2} m \dot{u}^{2} \quad ; \quad \Pi(u)=\frac{1}{2} k u^{2}-f \cdot u
\end{aligned}
$$

Hamiltonian
Define: Lagrangian $\mathcal{L}(u, \dot{u})=K(\dot{u})-\Pi(u) \quad H(u, p)=\underset{\substack{\frac{1}{2} \\ m i c t i o n}}{K(p)}+\Pi(u)$
Hamilton's Principle:

$$
\begin{aligned}
& \text { s Principle: } D\left[\int_{t_{1}}^{t_{2}} \mathcal{L}(u, \dot{u}) d t\right] \cdot \bar{u}=0 \quad \forall \bar{u}(t) \\
& \Rightarrow \frac{d}{d \epsilon}\left[\int_{t_{1}}^{t_{2}}\left[\frac{1}{2} m(\dot{u}+\epsilon \dot{\bar{u}})^{2}-\frac{1}{2} k(u+\epsilon \bar{u})^{2}+f \cdot(u+\epsilon \bar{u})\right] d t\right]_{\epsilon=0}^{\frac{1}{2} \frac{p^{2}}{m}}=0 \\
& \Rightarrow \int_{t_{1}}^{t_{2}}(m \dot{u} \dot{\bar{u}}-k u \bar{u}+f \bar{u}) d t=0 \quad \forall \bar{u}(t) \\
& \Rightarrow \int_{t_{1}}^{t_{2}}(-\bar{u} m \ddot{u}-k u \bar{u}+f \bar{u}) d t+[m \dot{u} \bar{u}]_{t_{1}}^{t_{2}}=0 \quad \forall \bar{u}(t) \\
& \quad \text { (Integrate by parts in } t) \\
& \quad\left(\bar{u}\left(t_{1}\right)=\bar{u}\left(t_{2}\right)=0\right)
\end{aligned}
$$

$$
\Rightarrow m \ddot{u}+k u-f=0
$$

This is the Euler-Lagrange equation corresponding to the
Lagrangian above. Lagrangian above.

Using the same Lagrangian $\mathcal{L}(u, \dot{u})=K(\dot{u})-\Pi(u)$
For 1-D problem:

$$
\sigma^{\prime}+b=\rho \ddot{u}
$$

For 2-D \& 3D problems:

$$
\operatorname{div} \underset{\sim}{\sigma}+\underline{b}=\rho \underline{u}
$$

Weak form in 3D

$$
\begin{aligned}
& \text { MR (W) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Note: }\left(\bar{u}_{i} S_{i j}\right),{ }_{j}=\bar{u}_{i, j} S_{\ddot{y}}+\bar{u}_{i} S_{i j, j} \\
& \nabla \underset{\sim}{u} \\
& \Rightarrow G(\underline{u}, \underline{\bar{u}})=\int_{\Omega}\left(\bar{u}_{i, j}\right) S_{i j} d \Omega-\int_{\Omega} \bar{u}_{i} b_{i} d \Omega-\underbrace{-\int\left(\bar{u}_{i} S_{i j}\right)_{, j}} d \Omega-\int_{r_{N}} \bar{u}_{i}\left(\underline{t}_{(\eta) i}-S_{i j} n_{j}\right) d \Gamma
\end{aligned}
$$

Divergence Theorem: $-\int_{\Omega} \operatorname{div}\left(s_{\sim}^{\top} \underline{u}\right) d \Omega=-\int_{\Gamma}\left(s^{\top} \underline{\underline{u}}\right) \cdot \underline{\eta} d \Gamma$

$$
\begin{aligned}
& \text { Note: }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{u}_{i, j} i j=\bar{\epsilon}_{i j} S_{i j}+\overline{1 / 2}\left(\bar{u}_{i, j}-\bar{u}_{j, i}\right) S_{i j}=\bar{\sim} \bar{\sim}_{\sim}^{s} \underset{\sim}{s}+\overline{s_{k}}\left({\underset{\sim}{\sim}}_{\sim}^{*}\right): S_{\sim}^{s} \\
& \Rightarrow \quad G(\underline{u}, \underline{u})=\underbrace{\int_{\Omega} \underset{\sim}{\epsilon}}_{W_{I}}: \underset{\sim}{S} d \Omega-\underbrace{\int_{\Omega} \underline{\bar{u}} \cdot \underline{b} d \Omega-\int_{F_{N}} \underline{\bar{u}} \cdot \underline{t}_{(\underline{n})} d \Gamma}_{-W_{E}}(P \vee W)(\omega)
\end{aligned}
$$

Energy form in 3D
One can show that the Vainberg's Theorem is satisfied for the above weak form.

$$
\begin{aligned}
\Rightarrow \pi(\underline{u}) & =\int_{0}^{1} G(t \underline{u}, \underline{u}) d t \\
& =\int_{0}^{1}\left[\int_{\Omega} \underset{\sim}{\epsilon}: \underset{\approx}{c}(t \underset{\sim}{\epsilon}) d \Omega-\int_{\Omega} \underline{u} \cdot \underline{b} d \Omega-\int_{\Gamma_{N}} \underline{u} \cdot \underline{t}_{(\underline{\Omega})} d r\right] d t \\
\Rightarrow \pi(\underline{u}) & =\int_{\Omega} 1 / 2 \underset{\sim}{\epsilon}: \underset{\sim}{c} \underset{\sim}{\epsilon} d \Omega-\int_{\Omega} \underline{u} \cdot \underline{b} d \Omega-\int_{\Gamma_{N}} \underline{u} \cdot \underline{t}_{(\Omega)} d r
\end{aligned}
$$

