Chapter 3: Stress and Equilibrium of Deformable Bodies

When structures / deformable bodies are acted upon by loads, they build up internal forces (stresses)
within them to be able to carry those loads (equilibrium) without breaking apart / failing. These internal
forces are usually electromagnetic forces between atoms and molecules of the constituent material.
However, we will assume that the body is a continuum and these forces are distributed uniformly over
surfaces / volumes.

Example:
Given: body / geometry, boundary conditions, material

properties, loads
Find: Solution (displacements, strains, stresses etc.)

everywhere in the body.  w (2) €(Z2) < (z)
Using: Governing partial differential equations (PDEs)
dir (S) + b = P (recs)
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(for small strain linear elasticity, for example)

In addition, if anything is changing with time, then find everything
at all times of interest! LAJ(E, N g (Z;‘@

Free body diagrams:
FBDs are one of the most important tools to determine if a structure / body is in equilibrium or not.
In FBDs we draw a specific body (or a specific part of a body) and mark all the external forces that are acting on it.
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Newton's Laws:
1. If sum of all the external forces acting on a body (or a specific part of a body) is 0, then that body
(or that specific part of the body) is at rest or constant velocity (in an inertial frame of reference).
2. If sum of all the external forces acting on a body (or a specific part of a body) is NOT 0, then the
instantaneous acceleration of the body (or a specific part of a body) is given by: F=m a
3. All forces in the universe occur as pairs of equal and opposite forces between two interacting bodies.

=> In order for a structure / deformable body to be in equilibrium, each and every part of the body (no
matter how small) must be in equilibrium i.e. all points within a body must be in equilibrium:
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Traction vector (at a point)
Traction is the distributed force per unit area acting at a point on a surface passing through that point either

on an outside (boundary) surface or any surface within the body.
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Stress tensor
Tractions at a point is related to internal forces that develop within a body to maintain equilibrium.
These internal forces within a body are best represented with a stress tensor field within the body.
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As we consider smaller & smaller tetrahedrons,
the traction on each face becomes more & more uniform / constant : j J_((;;\.) dA = 'E(g) An
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The Cauchy Stress-Traction relation

Note: From geometry, it can be shown that: Ma” {2}
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Normal and Shearing components of stress (at a point)
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Examples of a State of Stress (at a point):

Note: Convention for (outward) normal (tension positive)
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Principal (Eigen) values of Stress
Like any tensor, the stress tensor § also has the same interpretations of the Eigenvalues & Eigenvectors:

e Values and directions associated with maximum tractions
e Values and directions associated with only normal tractions / no shear tractions
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Partial Differential Equations for Equilibrium

In order for a body / structure to be in equilibrium, every sub-part of that body must also be equilibrium.
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Equilibrium of Moments:
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Thus governing equations of equilibrium of a structure / body:
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Examples of stress fields in equilibrium
Look at Examples 19 and 20 from the textbook (Hjelmstad 2005)

Example 19: Rigid Block under self-weight
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First and Second Piola-Kirchhoff stresses

Cauchy stress tensor (field) is defined over the deformed configuration of a structure / body and
is directly related to the governing equations of equilibrium and boundary conditions.

However, the deformed configuration of a body is usually unknown (and it is usually what we aim to
calculate). Thus, sometimes it is beneficial to try to express the equations of equilibrium on the
undeformed configuration of a body. This raises the question:

"Is there a stress tensor field P(z) (defined on the undeformed configuration) that after undergoing
deformation, produces Cauchy stress field S(x) satisfying the governing PDEs of equilibrium and BCs?"
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First: What does it mean to say stress field P(z) undergoing deformation to S(x)?
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157 Piola, Cheeds Epmivradonty BodAa/L Forved.

Note: Another way to view the 1st Piola stress tensor is to interpret it as the stress field resulting from a
simple change of variables from x to z.
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Governing equations in the undeformed configuration (for equilibrium in the deformed configuration)
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Second Piola Kirchhoff Stress tensor
Since the 1st Piola Kirchhoff stress tensor is nof symmetric, one can create a symmetric tensor as:
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The second Piola stress tensor was "concocted" to be a symmetric tensor. This is sometimes useful in
doing computations (for instance using the finite element method for large deformation problems).

Objective Stress Rates:

rd
Cauchy stress is objective: SU = iy, S &T,v-
But 3 is not objective.

To express rate-dependent behavior one must use an objective stress rate such as:
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