
Chapter 2: Kinematics of Deformation

In this chapter, we will study how bodies/structures move/deform and 
how can this motion/deformation be described mathematically.
(In general, bodies/structures move/deform when forces are acting on 
them, but we are not concerned (for now) about the causes of this 
motion/deformation.) 
We are concerned only about describing the motion/deformation.

Fast: Dynamic effects are important: Acceleration, inertia etc.•

Slow: Dynamic effects can be neglected: (quasi-)static. Or after steady state has been achieved.•

Motion / deformation can be:

Engineering strain•

Natural (true) strain •

Green-Lagrangian strain•

Almansi-Eulerian strain•

Logarithmic strain•

Conventional notions of strain in 1D

Consider a uniform bar of some material 
before and after motion/deformation.

Stretch of a material in 1D

General definition of strains in 1D:
(For non-uniform stretch)

All these are average measures of strain (for the entire bar) that 
are applicable for cases when the bar has uniform stretching.

Can be represented as a map:

or as a field (function)
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Generalizes the 1D concept of the map to 3D. 
Takes the position vector z of any point in the undeformed configuration and 
Return its position in the deformed configuration.

Deformation maps ϕ(z) and displacement vector fields u(z) in 3D   

Examples of deformation maps:

(i) Translation

(ii) Uniform Expansion in all 3 directions

(iii) Approximate bending deformation

Verify: for a point on the mid cross-section:

(pages 250-255, Timoshenko & Goodier)
(iv) Pure bending of a prismatic cantilever beam:

Note: For a cross section at z = c:

Note: For the lateral surfaces of the beam:

x = ϕ(z)
x = z + u(z)
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To generalize the ideas of stretch and strain to 3D 
consider a curve C embedded in a structure as it deforms: 

Stretch along a curve in 3D

...infinitely many possible curves.

Examples:

The deformed locations of these curves are given by:

To find the stretch along the curve:
Tangent to the undeformed curve: Tangent to the undeformed curve:

The 1-D stretch at a point P along the curve C is given by:

Note that the stretch at P in an arbitrary direction can be 
obtained by using a different curve passing though P.

Also note:

Lagrangian vs. Eulerian descriptions of motion/deformation

Note: The displacement field can be expressed as:

u  =  uL(z)  =  x(z) - z   =  ϕ(z) - z
u  =  uE(x)  =  x - z(x)  =  x - ϕ-1(x)

(Lagrangian)
(Eulerian)
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The relationship for stretches in arbitrary directions in 3D can be expressed more compactly as:
Deformation gradient tensor F

In components:

A useful interpretation of F

Examples:

(i) Translation

(ii) Uniform Expansion in all 3 directions

(iii) Approximate bending deformation
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Stretch and Strain in arbitrary directions in 3D 

Using the interpretation of F as:
we can calculate the stretch in any arbitrary direction n
of the undeformed configuration.

Lagrangian Strain in the direction

In general (for any direction):

Since strain should be zero for a rigid body 
motion/deformation:

Another interpretation
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Examples:

(i) Translation

(ii) Uniform Expansion in all 3 directions

Examples in the book:

Physical significance of components of C and E
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Shear is usually measured as change 
in angles between tangent vectors.

Shearing components of C and E

Example:
(simple extension)

Example:
(simple shear)

Note: The zero off-diagonal components of C in this case only mean 
that there is no shearing between the basis vectors g1, g2 and g3 of this 
particular coordinate system. 
Clearly there are other pairs of vectors nl and n2 for which there is 
definite shearing, even for this simple extension problem.
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From the preceding discussion one can see that 
for any deformation, a small neighborhood of a 
point deforms in a way that there is both 
stretching and shearing.

i.e. a  sphere of arbitrary infinitesimal 
undeformed tangent vectors dz is mapped to an 
ellipsoid of deformed tangent vectors dx.

Thus there would be some directions in which the 
stretching is extremum (maximum / minimum).

To find these directions of extremal stretch note:

However, unlike the effect of a symmetric tensor 
(where these extremal are not rotated), in this case, 
the extremal tangent vectors will in general have 
both stretching and rotation. 

Principal Deformations and Strains

Eigenvalues and Eigenvectors of C are found the same way as any symmetric tensor and have the same 
physical interpretations.

Note:

Similarly principal values of the Lagrangian strain tensor:
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A very useful interpretation of the deformation gradient is that it causes 
simultaneous stretching and rotation of tangent vectors.

Rotation and Stretch (Polar Decomposition) F = R U = V R

However one can also express the effect of F in terms of a sequence of stretching and rotation operations: 
F = R U

Or a sequence of rotation and stretching operations: F = V R

Note: Left & Right Cauchy Green deformation tensors:

(capture only the stretching part of deformation, not rotation)

Spectral decomposition of B and C
(to find V and U and R)
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Example: (simple shear)

From the preceding discussion we can see 
that the effect of F on all Eigenvectors n is 
to stretch them (by varying amounts) and 
rotate them all by the same amount.

(Psuedo-) Spectral Decomposition of F

Further, this helps us express the rotation tensor R as:

This leads to:

Physical interpretation of Principal invariants of U and C:
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Deformation Gradient (F) and Displacement Gradient (∇∇∇∇u)

Recall:

Deformation gradient:

Right Cauchy-Green Deformation Tensor

Green Lagrange Strain Tensor

Linearized Strain:

Example
(Ref: Pg 76, Hjelmstad)

However:
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Compatibility of Strains

For linearized (Small strain):

=> Total 6 equations of compatibility:

(similarly 2 more equations)

(similarly 2 more equations)
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Local and Global Changes in Area and Volume

We have considered local changes in length using the 
stretch λ(z) at specific points along curves, and to find 
global change in length of some segment of a curve, 
we integrate the local stretch λ(z) along the curve.

In the same way we can find local changes in 
area and volume of a body (at a specific point) 
and integrate that to find global/total changes in 
area and volume of a specific surface or volume.

Local change in Area:
Area is obtained by cross-product of 2 tangent vectors:

Original Total Area:

Deformed Local Area:Original Local Area:

Deformed Total Area:

Note: 

Ratio of local area change:
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Local change in Volume:
Volume is given by scalar triple product of 3 tangent vectors:

Original Local Volume:

Deformed Local Volume:

Original total volume: Deformed Total Volume:

Example: Look at examples 16 and 17 in the textbook.
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All motion (and deformation) is time-dependent.
All the quantities we have defined thus far are for 
a particular instant of time t.

Time dependent motion

Material time derivatives (for Eulerian descriptions)

Recall:
u  =  uL(z,t)  =  x(z,t) - z   =  ϕ(z,t) - z
u  =  uE(x,t)  =  x - z(x,t)  =  x - ϕ-1(x,t)

(Lagrangian)
(Eulerian)

Velocity

Acceleration

Example:

Lagrangian / Reference / Material Eulerian / Spatial

Velocity

Acceleration
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Rate of change of deformations and strains

Lagrangian / Reference / Material Eulerian / Spatial

Note:

Example: Rigid Body Motion:

Note: For any skew symmetric tensor W:
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Example Consider a time-dependent map:
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It is important that the physical quantities that we use to characterize material behavior and the laws of 
physics must not change with a change in the frame of reference i.e. they must be objective.
While scalar quantities are objective, unfortunately, a lot of vector and tensor quantities (especially those 
that measure time-rates of changes) are not objective - they are different in different frames of reference.

Objectivity / Frame-indifference

It is a "point of view / way of viewing" the processes occurring in the world / universe.

(so that you can record the distances, orientations and time-instants precisely).
(It is NOT the same as a choice of a coordinate-system.)

Think of: Observations (video) from a camera (with full 3D depth perception) and time stamp

Frame of reference: 

Example:

t = Oct. 15, 2014, 12:09:41pm t* = 6428%^$#?>* secs

Consider velocity and acceleration:

Thus velocity and acceleration are NOT objective! 
Rates of deformation and strain are not objective:

Objective Rates: (using Material / Reference frame)
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