CE-570 Advanced Structural Mechanics

The BIG Picture

- What is Mechanics?
- Mechanics is study of how things work: how anything works, how the world works!

People ask: "Do you understand the mechanics of \qquad ?" It could be:
Do you understand the mechanics of this building/bridge? (How loads are being carried?)
Do you understand the mechanics of heat transfer?
Do you understand the mechanics of how this automobile works?
Do you understand the mechanics of flight?
Do you understand fracture mechanics / wave mechanics / geo-mechanics / thermo-mechanics / electro-mechanics / celestial mechanics / quantum mechanics etc. etc.
In that sense, mechanics is almost synonymous with Physics. However, mechanics is really a branch of Physics.

- Within the context of Civil Engineering and Structural Engineering, mechanics is typically used to mean:
- Rigid body mechanics (Statics / Dynamics),
- Mechanics of (deformable) materials,
- Continuum mechanics (including solid / fluid mechanics),
- Structural mechanics
(typical courses in undergraduate / graduate curricula: all based on Newtonian Mechanics).
- Continuum mechanics
- Study of the behavior of continuous bodies (solid/fluid).

Note: we assume that the "macro-scale" behavior of continuous bodies is not affected by the "micro-scale" (atomic/molecular) structure of their constituent materials.

- Example Problem statement:

Given:

body / geometry, boundary conditions, material properties, loads

Find:
Solution (displacements, strains, stresses etc.) everywhere in the body.

$$
\underline{u}(\underline{x}) \quad \underset{\sim}{E}(\underline{x}) \quad \underset{\sim}{S}(\underline{x})
$$

Using: Governing partial differential equations (PDEs)

$$
\begin{aligned}
& \operatorname{div}(\underset{\sim}{S})+\underline{b}=\rho \underline{\ddot{u}} \\
& \underset{\sim}{E}=1 / 2\left(\underline{\sim} u+\nabla u^{\top}\right) \\
& S=\lambda \operatorname{tr}(\underset{\sim}{E}) I+2 \mu \underset{\sim}{E}
\end{aligned}
$$

(for small strain linear elasticity, for example)

In addition, if anything is changing with time, then find everything at all times of interest!

$$
\underline{u}(\underline{x}, t) ; \underset{\sim}{E}(\underline{x}, t) ; \underset{\sim}{s}(\underline{x}, t)
$$

- Structural Mechanics
- Builds upon continuum (solid) mechanics
- Make assumptions regarding the displacement field within individual structural members
- Reduce the "number" of unknowns (dimensionality of the problem)

Examples: Beam theory, plate theory, shell theory

- Role of approximate numerical solutions
- Analytical (exact) solutions to the governing PDEs are not possible in general.
- One can obtain good approximate solutions, using Finite Element Method (FEM) for example.
- Understanding the underlying mechanics and solution methods is very important to appreciate limitations of approximate solutions and interpret numerical results correctly.
- Structural Mechanics in relation to Structural Analysis and Design
- Structural Analysis consists of techniques to solve problems in Structural Mechanics (primarily for beam and frame structures, and use a lot of (conservative) approximations)
- Determinate structures: Find reactions, internal forces, and then displacements
- Indeterminate structures: Force/flexibility method; Displacement/Stiffness methods
- Structural dynamics: Study of structures subject to dynamic loads.
- Structural Design is an inverse problem:

Given:
All possible loads (combinations)
Permissible displacements, strains, stresses
Find: A structure that fulfills these constraints!
(i.e. Geometry, Boundary conditions, materials etc.)

Approach:
Assume a solution;
Check with Structural Analysis / detailed FEM
Refine as needed.

- Objectives of this course
- Gain in-depth understanding of the basic principles of continuum (solid) mechanics
- Learn about exact and approximate (numerical) solution methods for governing PDEs
- Introduction to Variational Principles and concepts in static stability

Chapter 1: Mathematical Preliminaries

In order to state most problems in mechanics, we need to define some physical entities such continuous bodies, surfaces, curves and points.

Definitions of geometric objects:

Choice of coordinate system:
Location of the Origin and orientation of basis vectors defines a coordinate system.

$B:(r, s, t) \rightarrow\left\{\begin{array}{l}x_{1}(r, s, t) \\ x_{2}(r, s, t) \\ x_{3}(r, s, t)\end{array}\right\}$
We will restrict ourselves to right-handed, orthonormal, Cartesian coordinate systems.

Scalars and scalar fields

Physical quantities with magnitude only. Examples: temperature, density etc.
Denoted with lower case Latin / Greek letters: $a, b, c \ldots ;$
As opposed to "temperature at a point" or "density at a point" in a body, one can also have scalar fields as functions of position:
Example: Temperature field Density field

Vectors

Physical quantities that need magnitude and direction for defining.
Examples: velocity, force etc.
Denoted with underlined lower case Latin letters:

Note: Position "vector" of a point is not strictly a vector since it depends on the definition of a coordinate system. The position "vector" changes if one changes the coordinate system.

Vector fields
Similar to scalar fields, we can have vector fields as a function of position: each point in a body may have a different velocity or force acting on it.

Example: Velocity field (Distributed) Force field

Vector Addition

Follows parallelogram law.

- Subtraction, Additive Inverse

$$
\underline{u}-\underline{v}=\underline{u}+(-\underline{v})
$$

- Properties of vector addition Commutative
Associative

$$
\begin{gathered}
\underline{u}+(-\underline{u})=\underline{0} \\
\underline{u}+\underline{v}=\underline{v}+\underline{u} \\
\underline{u}+(\underline{v}+\underline{w}) \\
\underline{w})(\underline{u}+\underline{v})+\underline{w}
\end{gathered}
$$

- Dot product

$$
\underline{u} \cdot \underline{v}=\|\underline{u}\|\|\underline{v}\| \cos \theta
$$

Vector Products

- Scalar multiplication (scales the length of the vector)

$$
=\frac{1}{2}\left(\|\underline{u}\|^{2}+\|\underline{v}\|^{2}-\|\underline{v}-\underline{u}\|^{2}\right)
$$

where

$$
\|\underline{u}\|^{2}=\underline{u} \cdot \underline{u}
$$

Note:

$$
\begin{aligned}
& \text { Kronecker Delta: }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i=1}^{3} \sum_{j=1}^{3} u_{i} v_{j}\left(\underline{e}_{i} \cdot \underline{e}_{j}\right)=u_{1} v_{1}\left(\underline{e}_{1} \cdot \underline{e}_{1}\right)+u_{1} v_{2}\left(\underline{e} \cdot \frac{e_{2}}{\delta_{22}}=1+u_{1} v_{3}\left(\underline{e}_{1} \cdot \underline{e}_{3}\right)+\right. \\
& u_{2} v_{1}\left(e_{2}-\frac{e}{-}\right)^{0}+u_{2} v_{2}\left(\underline{e}_{2} \cdot \underline{e}_{2}\right)+u_{2} v_{3}\left(e_{2} \cdot e_{3}\right)^{0}+ \\
& \delta_{33}=1 \\
& u_{3} v_{1}\left(e_{3} \cdot \underline{e}_{1}\right)^{0}+u_{3} v_{2}\left(\underline{e}_{3} \cdot e_{2}\right)^{0}+u_{3} v_{3}\left[\underline{e}_{3} \cdot \underline{e}_{3}\right)
\end{aligned}
$$

- Indicial notation and summation convention

In manipulating the component form of complicated vector expressions, we can utilize some shortcuts:

- Write the expression in terms of free and repeated / dummy indices (occurring exactly twice),
- Omit the summation sign (assuming that summation is implied for repeated / dummy indices),
- Make use of the Kronecker delta contraction property.

Examples:

$$
\rightarrow \text { Vector } \underline{v}=v_{1} \underline{e}_{1}+v_{2} \underline{e}_{2}+v_{3} \underline{e}_{3}=\sum_{i=1}^{3} v_{i} \underline{e}_{i} \equiv v_{i} \underline{e}_{i}
$$

\rightarrow Projection of a vector onto another unit vector:

\rightarrow Components of a vector:

\underline{v}

$\begin{aligned} & \rightarrow \text { Norm: }\|\underline{u}\|=\sqrt{\underline{u} \cdot \underline{u}}=\left[\left(\sum_{i=1}^{3}\right)\right.\left.u_{i} u_{i}\right]^{1 / 2}=\sqrt{u_{i} u_{i}} \\ & \text { implied } \\ & \rightarrow \text { Note : } \delta_{i i}=\underline{e}_{3}=v_{3}(i=3) \\ &=\sqrt{u_{1} u_{1}+u_{2} u_{2}+u_{3} u_{3}}\end{aligned}$

$\|\underline{u} \times \underline{v}\|=\|u\|\|v\| \sin \theta$
(Area of parallelogram)

$\underline{u} \times \underline{v}=\left(\sum_{i=1}^{3} u_{i} \underline{e}_{i}\right) \times\left(\sum_{j=1}^{3} \underline{v}_{j} \underline{e}_{j}\right)=u_{i}^{v} v_{j}\left(\underline{e}_{i} \times \underline{e}_{j}\right)$ $=u_{1} v_{1}\left(\underline{e}_{1} \times e_{1}\right)+u_{1} v_{2}(\overbrace{\left.e_{1} \times \underline{e}_{2}\right)}^{+\underline{e}_{3}}+u_{1} v_{3} \overbrace{\left(\underline{e}_{1} \times \underline{e}_{3}\right.}^{-e^{-2}}$ $+u_{2} v_{1}\left(\underline{e}_{2} x \underline{e}_{1}\right)^{-}+u_{2} v_{2}\left(e_{2} x \underline{e}_{2}\right)+u_{2} v_{3}\left(\underline{e}_{2} \times \underline{e}_{3}\right)$ $+u_{3} v_{1} \overbrace{\left(e_{3} \times \underline{e}_{1}\right)}^{+e_{2}}+u_{3} v_{2} \overbrace{\left(\underline{e}_{3} x \underline{e}_{2}\right)}^{-e_{1}}+u_{3} v_{3}\left(e_{-} \times \underline{e}_{3}\right)$

- Permutation (or alternating or Levi-Civita) symbol

Let $\epsilon_{i j k}=\left(\underline{e}_{i} \times \underline{e}_{j}\right) \cdot \underline{e}_{k}$
Note:

$\rightarrow \epsilon_{i j k}= \begin{cases}0 & \text { if } i=j \text { or } j=k \text { or } k=i \\ +1 & \text { if }(i, j, k) \text { are cyclic: } 123,231,312 \\ -1 & \text { if }(i, j, k) \text { are acyclic: } 132,321,213\end{cases}$

$$
\begin{aligned}
& \rightarrow \epsilon_{i j k} \underline{e}_{k}=\sum_{k=1}^{3} \epsilon_{i j k} \underline{e}_{k}=\left[\left(\underline{e}_{i} \times \underline{e}_{j}\right) \cdot \underline{e}_{k}\right] \underline{e}_{k}=\left(\underline{e}_{i} \times e_{j}\right) \\
& =\left(\epsilon_{i j 1} \underline{e}_{1}+\epsilon_{i j 2} \underline{e}_{2}+\epsilon_{i j 3} e_{3}\right)
\end{aligned}
$$

> Component of $\left(\underline{e}_{i} \times \underline{e}_{j}\right)$ in \underline{e}_{1}
> in e_{2}

$$
\epsilon_{i j k} \underline{e}_{k}=\left(\underline{e}_{i} \times \underline{e}_{j}\right)
$$

Thus cross product:

$$
\underline{u} \times \underline{u}=u_{i} v_{j}\left(\underline{e}_{i} \times \underline{e}_{j}\right)=\epsilon_{i j k}^{{ }_{j}} u_{i} v_{j} \underline{e}_{k}
$$

(Triple Sum)

Note: $\rightarrow \underline{\underline{u}} \times \underline{\underline{u}}=-\underline{v} \times \underline{u}$

$$
\rightarrow \alpha \underline{u} \times(\beta \underline{v}+\gamma \underline{w})=\alpha \beta(\underline{w} \times \underline{v})+\alpha \gamma(\underline{u} \times \underline{w})
$$

- Scalar Triple product of 3 vectors

$$
\begin{aligned}
& \underline{n}=\frac{\underline{u} \times \underline{v}}{\|\underline{u} \times \underline{v}\|} \\
& (\underline{u} \times \underline{v}) \cdot \underline{w}=\underbrace{\|\underline{u} \times \underline{v}\|} \underbrace{\left(\underline{w} \cdot \frac{\underline{u}}{\| \underline{u} \times \underline{v})}\right)}_{h} \\
& \text { Volume }=\text { Area } \times \underbrace{n}_{h}
\end{aligned}
$$

Note

$$
\begin{aligned}
& \rightarrow(\underline{u} \times \underline{v}) \cdot \underline{w} \\
&=(\underline{w} \times \underline{u}) \cdot \underline{v}=(\underline{v} \times \underline{w}) \cdot \underline{u} \\
&=-(\underline{u} \times \underline{w}) \cdot \underline{v}=-(\underline{w} \times \underline{v}) \cdot \underline{u}
\end{aligned}
$$

$$
\begin{aligned}
(\underline{u} \times \underline{v}) \cdot \underline{\omega} & =\left(\epsilon_{i j k} u_{i} v_{j} \underline{e}_{k}\right) \cdot\left(\omega_{l} \underline{e}_{l}\right) \\
& =\epsilon_{i j k} u_{i} v_{j} \omega_{l}\left(e_{k} \cdot \underline{e}_{l}\right) \\
(\underline{u} \times \underline{v}) \cdot \underline{\omega} & =\epsilon_{i j k} u_{i} v_{j} \omega_{k}
\end{aligned} \underbrace{}_{\delta_{k l}} \quad l
$$

$$
\begin{aligned}
= & \left(u_{1} v_{2}-u_{2} v_{1}\right) w_{3} \\
& +\left(u_{2} v_{3}-u_{3} v_{2}\right) \omega_{1}+\left(u_{3} v_{1}-u_{1} v_{3}\right) w_{2}
\end{aligned}
$$

Tensors
In mechanics we often need more general quantities than just scalars and vectors.
Tensors are a generalization of the concept of scalars and vectors
Definition: \quad Tensors are entities that operate upon a vector to produce another vector

$$
\begin{array}{rl}
I & u \\
\text { Examples: Strain }(\underset{\sim}{E}) ; \operatorname{Stress}(S) ; \text { Identity }(I) \text {; } \\
& \text { Moment of Inertia }\left(I_{\rho}\right) ; \operatorname{Projection}(P)
\end{array}
$$

A good way to think about tensors is in terms of their effect on an arbitrary vector:

Note: Its effect can cause change in length \& direction (visualized as an ellipsoid)

Examples:
Identity:

Projection (on a plane):

such that

$$
\stackrel{T}{\sim} \underset{\nsim}{\approx}\left[\begin{array}{lll}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right]
$$

$$
\begin{aligned}
\underline{\sim} & \underline{u} \\
{\left[\begin{array}{lll}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right]\left\{\begin{array}{l}
\underline{u} \\
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right\} } & =\left\{\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right\} \\
T_{i j} u_{j} & =v_{i}
\end{aligned}
$$

i.e. $\quad T_{11} u_{1}+T_{12} u_{2}+T_{13} u_{3}=v_{1}$
$T_{21} u_{1}+T_{22} u_{2}+T_{23} u_{3}=v_{2}$
$T_{31} u_{1}+T_{32} u_{2}+T_{33} u_{3}=v_{3}$

Tensor fields:
Just as scalar and vector fields, we can have tensor fields ie. tensor as a function of position: $\boldsymbol{T}(\boldsymbol{x}): \underset{\sim}{\mathcal{J}}(\underline{x})$ Note that writing a tensor field as $\boldsymbol{T}(\boldsymbol{x})$ does not mean that \boldsymbol{T} is operating on \boldsymbol{x}.
It means that the $\boldsymbol{T}(\boldsymbol{x})$ is a function of \boldsymbol{x} and still operates on a vector $\boldsymbol{u}(\boldsymbol{x})$ at that point.
Written as: $\boldsymbol{T}(\boldsymbol{x}) \boldsymbol{u}(\boldsymbol{x})=\boldsymbol{v}(\boldsymbol{x})$
or simply as: $\quad \boldsymbol{T} \boldsymbol{u}=\boldsymbol{v}$
Example:

$$
\begin{aligned}
I(\underline{x}) \underline{u}(\underline{x}) & =\underline{v}(\underline{x}) \\
\sim \underline{u} & =\underline{v}
\end{aligned}
$$

Stress or strain fields.

Properties of a tensor:
$\rightarrow I$ is a linear operator

$$
\Rightarrow \quad \underset{\sim}{T}(\alpha \underline{u}+\beta \underline{v})=\alpha \underline{T} \underline{u}+\beta \underset{\sim}{v} \underline{v}
$$

\rightarrow Tensors can le added/ subtracted $\Rightarrow(\underset{\sim}{\tau}+\underset{\sim}{s}) \underline{u}=\underline{\sim} \underline{u}+\underset{\sim}{s} \underline{u}$
\rightarrow Scalar multiplication

$$
\Rightarrow(\alpha \underline{T}) \underline{u}=\alpha(\underline{T} \underline{u})
$$

Tensor product of two vectors
It is possible to construct a tensor from two vectors by using a special operation called a tensor product:

Let
such that $T \underline{\omega}=\left(\underline{u} \otimes \frac{v}{4}\right) \frac{\omega}{4}$

$$
\equiv \underline{u}(\underline{u} \cdot \underline{\omega})
$$

\otimes is also called dyadic product.

In matrix notation: $\underset{\sim}{T}=\underline{u} \otimes \underline{v}$ such that: $(\underline{u} \otimes \underline{v}) \underline{\omega}=\underline{u}(\underline{v} \cdot \underline{\omega})$

$$
\underbrace{\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]}_{\text {(outer product) }[I]}\left[\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right]=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] v_{i} w_{i}
$$

Just like any vector can be expressed in terms of basis vectors: $\underline{e}_{1}, \underline{e}_{2}, \underline{e}_{3}: \quad \underline{u}=u_{i} \underline{e}_{i}$ We can also construct basis tensors: $\left(\underline{e}_{i} \otimes \underline{e}_{j}\right)$ such that $\left(\underline{e}_{i} \otimes \underline{e}_{j}\right) \underline{e}_{k}=\underline{e}_{i}\left(\underline{e}_{j} \cdot \underline{e}_{k}\right)$
Using this: $\quad \underset{\sim}{T} \sum_{i=1}^{3} \sum_{j=1}^{3} T_{i j}\left(\underline{e}_{i} \otimes \underline{e}_{j}\right)$

$$
=\underline{e}_{i} \delta_{j k}
$$

$e_{1} \otimes e_{1}$

$$
\begin{aligned}
& \left.\begin{array}{rl}
= & T_{11}\left(\underline{e}_{1} \otimes \underline{e}_{1}\right)+T_{12}\left(\underline{e}_{1} \otimes \underline{e}_{2}\right)+T_{13}\left(\underline{e}_{1} \otimes \underline{e}_{3}\right) \\
& +T_{21}\left(\underline{e}_{2} \otimes \underline{e}_{1}\right)+T_{22}\left(\underline{e}_{2} \otimes \underline{e}_{2}\right)+T_{23}\left(\underline{e}_{2} \otimes e_{3}\right) \\
& +T_{31}\left(\underline{e}_{3} \otimes \underline{e}_{1}\right)+T_{32}\left(\underline{e}_{3} \otimes e_{2}\right)+T_{33}\left(\underline{e}_{3} \otimes e_{3}\right)
\end{array}\right\} \sim\left[\begin{array}{lll}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right]
\end{aligned}
$$

Examples:
\rightarrow Identity $I=\delta_{i j}\left(\underline{e}_{i} \otimes \underline{e}_{j}\right) \sim\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

\rightarrow Projection (on a plane):

$$
\underset{\sim}{p}=I-\underline{n} \otimes \underline{n}
$$

such that $\underset{\sim}{\underset{\sim}{u}}=I, \underline{u}-(\underline{n} \otimes \underline{n}) \underline{u}$

$$
\underline{v}=\underline{u}-(\underline{u} \cdot \underline{n}) \underline{n}
$$

- Tensor Composition (product of 2 tensors to get another tensor) Let

$$
\begin{aligned}
\underset{\sim}{R} & =\underset{\sim}{S} \underset{\sim}{T} \\
\underset{\sim}{R} \underline{u} & =(\underset{\sim}{S} \underset{\sim}{T}) \underline{u} \equiv \underset{\sim}{S}(\underset{\sim}{T} \underline{u})
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \rightarrow \quad S_{\sim} T_{\sim} \neq T_{\sim} S_{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \quad \tau^{2}=\tau T \\
& \rightarrow \quad \underset{\sim}{S}\left(T_{N}+{\underset{\sim}{U}}^{\sim}\right)=S_{\sim}^{T} T+\underset{\sim}{U}
\end{aligned}
$$

$$
\begin{aligned}
& =(\underbrace{s_{i j} T_{j l}}) u_{l} \underline{e}_{i} \\
& \text { matrix multocation of }[5][T] \\
& \text { Thus } \quad \underset{\sim}{S} T=S_{i k}\left(\underline{e}_{i} \otimes \overparen{e}_{k}\right) T_{l j}\left(e_{l}^{\delta_{k l}} \otimes e_{j}\right) \\
& =S_{i k} T_{k j}\left(\underline{e}_{i} \otimes \underline{e}_{j}\right) \delta_{k \ell} \\
& =S_{i k} T_{k j}\left(\underline{e}_{i} \otimes e_{j}\right)
\end{aligned}
$$

- Tensor inverse

- Tensor transpose

Note: $\underline{v}=\underset{\sim}{T}$

$$
\begin{gathered}
\underline{u}={\underset{\sim}{\tau}}^{-1} \underline{v} \\
\underset{\sim}{T}{\underset{\sim}{T}}^{-1}={\underset{\sim}{\sim}}^{-1} \underset{\sim}{T}=\underset{\sim}{I}
\end{gathered}
$$

For any 2 arbitrary vectors \boldsymbol{u} and \boldsymbol{w}

$$
\underline{\omega} \cdot(\underline{T} \underline{\omega}) \equiv \underline{u} \cdot\left({\underset{\sim}{\sim}}^{\top} \underline{\omega}\right)
$$

Note :

$$
\begin{aligned}
& \omega_{i} \underline{e}_{i} \cdot T_{j k} u_{k} \underline{e}_{j} \leftrightarrow u_{m} \underline{e}_{m} \cdot\left(T^{\top}\right)_{n l} \omega_{l} \underline{e}_{n} \\
& u_{k} \omega_{i} T_{j_{k}} \delta_{i j} \\
& \leftrightarrow \\
& \begin{array}{ll}
u_{k} \omega_{i} T_{i k}
\end{array} \quad 4 \begin{array}{l}
u_{n} \omega_{l}\left(T^{\top}\right)_{n l} \\
u_{k} w_{i}\left(T^{\top}\right)_{k i}
\end{array}\binom{n \rightarrow k}{l \rightarrow i} \\
& \Rightarrow T_{i k}=\left(T^{\top}\right)_{K i}
\end{aligned}
$$

- Symmetric Tensors

$$
\left.\underline{u} \cdot(\underset{\sim}{S} \underset{\sim}{u})=\underline{v} \cdot(\underset{\sim}{S} \underline{u}) \Rightarrow \underset{\sim}{S}={\underset{\sim}{S}}^{\top} \quad \text { (ie. } \quad S_{i k}=S_{k i}\right)
$$

- Skew-symmetric Tensors

$$
\underline{u} \cdot(\underset{\sim}{w} \underline{v})=-\underline{v} \cdot(\underset{\sim}{w} \underline{u}) \Rightarrow \underset{\sim}{w}=-{\underset{\sim}{w}}^{\top} \quad\left(\text { ie. } W_{i k}=-W_{k i}\right)
$$

Note: Any tensor \boldsymbol{T} can be expressed as:

$$
\stackrel{T}{\sim}=\underbrace{1 / 2\left(\tau+T_{\sim}^{\top}\right)}_{\text {symmetric }}+\underbrace{1 / 2\left(T-T^{\top}\right)}_{\text {skew }}
$$

$$
\underline{v}=v_{i}^{\prime} \underline{e}_{i}^{\prime} \sim\left\{\begin{array}{c}
v_{1}^{\prime} \\
v_{2}^{\prime} \\
v_{3}^{\prime}
\end{array}\right\}_{\left(0, e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right)}
$$

Note: $\quad v=v_{i} \underline{e}_{i}=v_{i}^{\prime} \underline{e}_{i}^{\prime}$
Recall $v_{i}=\underline{v} \cdot e_{i} \quad$ and $\quad v_{i}^{\prime}=\underline{v} \cdot \underline{e}_{i}^{\prime}$
Thus

$$
\begin{aligned}
& v_{i}=\left(v_{j}^{\prime} \underline{e}_{j}^{\prime}\right) \cdot \underline{e}_{i} \\
& v_{i}=\underbrace{\left(\underline{e}_{j}^{\prime} \cdot \underline{e}_{i}\right)}_{Q_{j i}} v_{j}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& v_{i}^{\prime}=\left(v_{j} \underline{e}_{j}\right) \cdot \underline{e}_{i}^{\prime} \\
& v_{i}^{\prime}=\underbrace{\left(\underline{e}_{i}^{\prime} \cdot \underline{e}_{j}\right)}_{Q_{i j}} v_{j}
\end{aligned}
$$

In terms of matrices:

$$
\begin{array}{cc}
{\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=} & {\left[\begin{array}{lll}
Q_{11} & Q_{21} & Q_{31} \\
Q_{12} & Q_{22} & Q_{32} \\
Q_{13} & Q_{23} & Q_{33}
\end{array}\right]\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime} \\
v_{3}^{\prime}
\end{array}\right] ;}
\end{array}\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime} \\
v_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
Q_{11} & Q_{12} & Q_{13} \\
Q_{21} & Q_{22} & Q_{23} \\
Q_{31} & Q_{32} & Q_{33}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

Note: $\quad[\boldsymbol{Q}]$ here is a transformation matrix (not a tensor).
$[\boldsymbol{Q}]$ is an orthogonal matrix: $[\boldsymbol{Q}][\boldsymbol{Q}]^{\mathrm{T}}=[\boldsymbol{Q}]^{\mathrm{T}}[\boldsymbol{Q}]=[\boldsymbol{I}]$
However a tensor \boldsymbol{Q} can be defined such that $\boldsymbol{e}_{i}=\boldsymbol{Q} \boldsymbol{e}_{i}^{\prime} \quad$ (see problem 13 in Hjelmstad)
$\underline{\text { Transformation of Tensors }}$

$$
\begin{aligned}
& \left.I=T_{i j}\left(\underline{e}_{i} \otimes e_{j}\right) \sim\left[\begin{array}{lll}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right]_{\left(0, e_{1}\right.} \underline{e}_{2} \underline{e}_{3}\right) \\
& I_{\sim}=T_{i j}^{\prime}\left(\underline{e}_{i}^{\prime} \otimes \underline{e}_{j}^{\prime}\right) \sim\left[\begin{array}{lll}
T_{11}^{\prime} & T_{12}^{\prime} & T_{13}^{\prime} \\
T_{21}^{\prime} & T_{22}^{\prime} & T_{23}^{\prime} \\
T_{31}^{\prime} & T_{32}^{\prime} & T_{33}^{\prime}
\end{array}\right]\left(0_{1}^{\prime}, \underline{e}_{1}^{\prime} e_{2}^{\prime} e_{3}^{\prime}\right)
\end{aligned}
$$

Note: Tensor components can le obtained as:

$$
\begin{aligned}
T_{i j} & =\underline{e}_{i} \cdot\left(T_{\sim} \underline{e}_{j}\right)=\underline{e}_{i} \cdot T_{m n}\left(\underline{e}_{m} \otimes \underline{e}_{n}\right) \underline{e}_{j}=T_{i n n} \cdot \overbrace{i} \underline{e}_{i} \cdot \underline{e}_{m})\left(\underline{e}_{i} \cdot T_{m n}^{\prime}\left(\underline{e}_{m}^{\prime} \otimes \underline{e}_{n}^{\prime}\right) \cdot \underline{e}_{j}=T_{m}^{\prime}\right)=T_{i j}^{\prime}(\underbrace{\underline{e}_{n}^{\prime} \cdot \underline{e}_{j}}_{Q_{n}}) \underbrace{\left(\underline{e}_{m}^{\prime} \cdot \underline{e}_{i}\right)}_{Q_{m i}} \\
& =T_{i j}
\end{aligned}
$$

Tensor Invariants (Quantities that don't change, no matter which coordinate system is chosen)
Example of an invariant for a vector:
magnitude $\left\|\frac{v}{}\right\|=\sqrt{v_{i} v_{i}}$

Similarly, a tensor invariant is a function of the tensor components (in any coordinate system):

$$
f\left(T_{i j}\right)
$$

$$
\|\underline{v}\|=\sqrt{v_{i}^{\prime} v_{i}^{\prime}}=\sqrt{\left(Q_{i m} v_{m}\right)\left(Q_{i n} v_{n}\right)}
$$

$$
\begin{array}{r}
=\sqrt{\delta_{n n} v_{n n} v_{n}} \\
\operatorname{Qim}_{\text {mm }} \\
=\sqrt{v_{n} v_{n}}
\end{array}
$$

In a different coordinate system, the tensor components would be given by: $\quad T_{i j}^{\prime}=Q_{i m} T_{m n}(Q)_{n j}^{\top}$
$\begin{array}{lll}\text { For a function to be invariant: } & f\left(T_{i j}\right)=f\left(T_{i j}^{\prime}\right) & \forall \quad[Q] \text { rotation } \\ \text { Simply referred to as: } & f(T) & \\ & & \\ & \text { (for any) }\end{array}$
Primary Invariants
Note:

Eigenvalues \& Eigenvectors of Symmetric Tensors (Principal Invariants)
As mentioned earlier, a tensor operates on a vector to produce another vector (by stretching and/or rotating it). However, for a given symmetric tensor, there are some specific vectors (directions) \boldsymbol{n} on which the action of the tensor is purely stretching (no rotation).

$$
\text { i.e. } \quad \underset{\sim}{T}=\lambda \underline{n}
$$

The problem of finding λ and \boldsymbol{n} for a given (symmetric) tensor is called the Eigenvalue problem. To obtain nontrivial solutions ($\boldsymbol{n} \neq \mathbf{0}$):

$$
\begin{aligned}
& \text { 0): } \quad(\underset{\sim}{T}-\lambda \underset{\sim}{I}) \underline{n}=0 \\
& \Rightarrow \quad \operatorname{det}(T-\lambda \underset{\sim}{I})=0 \\
& \text { called the characteristic equation: }
\end{aligned} \Rightarrow \operatorname{det}\left[\begin{array}{lll}
T_{11}-\lambda & T_{12} & T_{13} \\
T_{21} & T_{22}-\lambda & T_{23} \\
T_{31} & T_{32} & T_{33}-\lambda
\end{array}\right]=0
$$

This results in a cubic equation for λ called the characteristic equation:

$$
-\lambda^{3}+I_{T} \lambda^{2}-\mathbb{I}_{T} \lambda+{I_{T}}^{T}=0
$$

where $I_{T}, I I_{T}, I I I_{T}$ are called the Principal Invariants of \boldsymbol{T} :

$$
\begin{array}{rlrl}
I_{T}=\operatorname{tr}(T) & =T_{i i} \\
\Pi_{T}=\frac{1}{2}\left[\left(\operatorname{tr}\left(T_{\sim}\right)\right)^{2}-\operatorname{tr}\left(T_{\sim}^{2}\right)\right] & & =1 / 2\left[\left(T_{i i}\right)^{2}-\left(T_{i j} T_{j i}\right)\right] \\
\mathbb{I I}_{T}=\operatorname{det}(T) & & =1 / 6 \epsilon_{i j k} \epsilon_{l m n} T_{i l} T_{j m} T_{k n}
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
\rightarrow f_{1}(T) \equiv T_{i i} \quad \leftarrow \operatorname{tr}_{\sim}\left(T_{\sim}\right): \operatorname{tracl} \mid \quad T_{i i}^{\prime}=\underbrace{Q_{i m}}_{r} T_{m w}\left(T_{T}\right)=\operatorname{tr}\left(T_{n}^{2}\right)
\end{array} \\
& \begin{aligned}
& \rightarrow f_{3}(T) \equiv T_{i j} T_{j k} T_{k i}+\operatorname{tr}\left(T_{N}{ }^{3}\right) \\
& \vdots \\
&\left.\rightarrow f_{n}(T) \equiv T_{i_{1} i_{2}} T_{i_{2} i_{3}} T_{i_{3} i_{4}} \ldots . . T_{i_{n} i_{1}+\operatorname{tr}\left(T_{\sim}^{n}\right)}^{n}\right)
\end{aligned} \\
& \begin{array}{l}
=\delta_{n n h} T_{n / n}\left[Q^{T}\right][Q]=[I] \\
=T_{n n}=T_{i i}
\end{array} \\
& \text { (imariont) }
\end{aligned}
$$

Solving the characteristic equation:
The cubic polynomial equation, in general, will have 3 roots (Eigenvalues): $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and 3 corresponding Eigenvectors: $\boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \boldsymbol{n}_{3}$
Example:

- By hand (factorizing):

$$
I \sim\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 5^{2} & -1 \\
0 & -1 & 5
\end{array}\right] \Rightarrow(3-\lambda)[(5-\lambda)(5-\lambda)-1]=0 . \Rightarrow(3-\lambda)\left[\lambda^{2}-10 \lambda+24\right]=0
$$

Characteristic equation: $-\lambda^{3}+\underbrace{13}_{I_{T}} \lambda^{2}-\underbrace{54}_{\Pi_{T}} \lambda+\underbrace{72}_{I_{T}}=0 \quad \lambda_{1}=3$

$$
\text { Factorize: } \quad(3-\lambda)(\lambda-6)(\lambda-4)=0 \Rightarrow \begin{aligned}
& \lambda_{2}=4 \\
& \lambda_{3}=6
\end{aligned}
$$

Corresponding Eigenvectors:

For $\lambda_{l}=3$

For $\quad \lambda_{2}=4$

$$
\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] 1=\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
v_{1} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \Rightarrow \underline{x}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

For $\lambda_{3}=6$

$$
\left[\begin{array}{ccc}
-3 & 0 & 0 \\
0 & -1 & -1 \\
0 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
y_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{c}
v_{1} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \Rightarrow n_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]
$$

- Using numerical non-linear equation solver (Newton's method) $\uparrow g(x)$
To solve $g(x)=0$

$$
g(x)=0
$$

Expand

$$
\begin{aligned}
& \quad \underbrace{g\left(x_{i}+\Delta x\right)}_{0} \cong g\left(x_{i}\right)+\left[\frac{d g}{d x}\right] \Delta x \\
& \Rightarrow \Delta x=\frac{-g\left(x_{i}\right)}{g^{\prime}\left(x_{i}\right)} ; x_{i+1}=x_{i}+\Delta x
\end{aligned}
$$

- Using existing software programs such as MATLAB:

$$
\begin{aligned}
& \text { >> } \mathbf{T}=\left[\begin{array}{lllllllll}
3 & 0 & 0 & ; & 5 & -1 & 0 & -1 & 5
\end{array}\right] \\
& \text { T = } \\
& {\left[\begin{array}{rrr}
3 & 0 & 0 \\
0 & 5 & -1 \\
0 & -1 & 5
\end{array}\right]} \\
& \gg[v, d]=\operatorname{eig}(T) \\
& v=\begin{array}{rrr}
\underline{n}_{1} & n_{2} & \underline{n}_{3} \\
\begin{array}{|r|r|r|}
1.0000 \\
0 \\
0
\end{array} & \begin{array}{r}
0 \\
-0.7071 \\
-0.7071 \\
\hline
\end{array} & \begin{array}{r}
0.7071 \\
0.7071 \\
\hline
\end{array}
\end{array} \\
& \mathrm{~d}= \\
& \begin{array}{cccc}
\hline 3 & 0 & 0 & \lambda_{1} \\
0 & 4 & 0 & \lambda_{2} \\
0 & 0 & 6 & \lambda_{3}
\end{array}
\end{aligned}
$$

Note: The Principal invariants $I_{T}, I I_{T}, I I I_{T}$ of \boldsymbol{T} are the coefficients of the characteristic equation:

$$
\begin{aligned}
I_{T}= & \gg \operatorname{trace}(\mathrm{T}) \\
& \text { ans }= \\
& 13 \\
I I_{T}= & \gg 1 / 2^{\star}\left((\text { trace }(\mathrm{T}))^{\wedge} 2-\operatorname{trace}\left(\mathrm{T}^{\wedge} 2\right)\right) \\
& \text { ans }= \\
& 54 \\
I I I_{T}= & \gg \operatorname{det}(\mathrm{T}) \\
& \text { ans }=
\end{aligned}
$$

72

- Two roots repeated: $\lambda_{1}=\lambda_{2}, \lambda_{3}$

$$
\left(\underline{n}_{1}, \underline{n}_{2}\right), \underline{n}_{3}
$$

- Three roots repeated:
$\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda$ $\left(\underline{n}_{1}, n_{2}, n_{3}\right)$

A symmetric tensor \boldsymbol{T} can be expressed in terms of its Eigenvectors as:

$$
\underset{\sim}{T}=\sum_{i=1}^{3} \lambda_{i}\left(\underline{n}_{i} \otimes \underline{n}_{i}\right)
$$

(Exception to summation convention)
 i.e. $\quad \underset{\sim}{\sim}=\lambda_{1}\left(\underline{n}_{1} \otimes n_{1}\right)+\lambda_{2}\left(\underline{n}_{2} \otimes n_{2}\right)+\lambda_{3} n_{3} \otimes n_{3}$
i.e. $\tau \sim \lambda_{1}\left[\underline{n}_{1}\right]\left[\underline{n}_{1}\right]+\lambda_{2}\left[\underline{n}_{2}\right]\left[\underline{n}_{2}\right]+\lambda_{3}\left[\underline{n}_{3}\right]\left[\underline{n}_{3}\right]$

Thus $\quad \underset{\sim}{u}=\sum_{i=1}^{3} \lambda_{i}\left(\underline{n}_{i} \otimes \underline{n}_{i}\right) \underline{u}=\sum_{i=1}^{3} \lambda_{i}\left(n_{i} \cdot \underline{u}\right) \underline{n}_{i}$

Note: If we express the components of a tensor in a coordinate system that coincides with its principal eigenvectors:

$$
\text { i.e. } \quad \underline{e}_{i}^{\prime}=\underline{n}_{i}
$$

Then using Spectral representation:

$\left.\begin{array}{ll}\lambda_{2} & \\ & \lambda_{3}\end{array}\right]$

$=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\left(n_{1} \underline{n}_{2} \underline{n}_{3}\right)$
Also note that using this basis (called canonical basis), the principal invariants are simply given as:

$$
\begin{aligned}
& \mathbb{I}_{T}=\lambda_{1}+\lambda_{2}+\lambda_{3} \\
& \mathbb{I}_{T}=\lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1} \\
& \mathbb{I}_{T}=\lambda_{1} \lambda_{2} \lambda_{3}
\end{aligned}
$$

Caley-Hamilton Theorem
An important property of tensors (and matrices) is that they satisfy their own characteristic equation:

$$
-T_{\sim}^{3}+I_{T}{\underset{\sim}{T}}^{2}-I_{T}{\underset{\sim}{T}}+\Pi_{T} I_{\sim}=\underset{\sim}{0}
$$

As previously noted, scalars, vectors and tensors are quantities that are associated with each point in a body as a field.
They can be expressed as functions of position:
$\theta(x)$ (scalar)
$\underline{v}(\underline{x})$ (vector)
$S(\underline{x})$ (tensor)

In order to work with fields, we need to use concepts of differential and integral calculus.
First recall the following basic concepts in 1D

Scalar function of 1 variable:

Derivative:

$$
\frac{d f}{d x} \equiv \lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

FLUX of $f(x)$ over the boundary of Δx

$$
\text { Note: } \frac{d f}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) n_{+}+f(x) n_{-}}{\Delta x}
$$

measure (length) of Δx

Fundamental Theorem of Calculus:

$$
\begin{aligned}
\int_{a}^{b} \underbrace{\left(\frac{d f}{d x}\right)}_{f^{\prime}(x)}) d x \equiv \lim _{N \rightarrow \infty} \sum_{i=0}^{N} f^{\prime}(a+i \Delta x) \Delta x & =f(b)-f(a) \\
\text { where } \Delta x=\frac{b-a}{N} & =f(b) \eta_{+}+f(a) n_{-}
\end{aligned}
$$

Scalar field: scalar function of position "vector" in 2D / 3D

Gateaux
Directional Derivative (of a scalar field, $D f(\underline{x}) \cdot \underline{n} \equiv \lim _{\epsilon \rightarrow 0} \frac{f(\underline{x}+\epsilon \underline{n})-f(\underline{x})}{\epsilon} \quad$ (=scalar) at a specific point \boldsymbol{x}, in the direction \boldsymbol{n}) \square
Example: $f(\underline{x})=\underline{x} \cdot \underline{x}$

$$
f(x) \cdot n=\left.\frac{d}{d \epsilon}[(\underline{x}+\in \underline{n}) \cdot(x+f \underline{n})]\right|_{f=0}
$$

D

Gradient of a scalar field: Direction of maximum change (increase) in value of $f(\boldsymbol{x})$: (results in a vector field)
Example: $f(\underline{x})=\underline{x} \cdot \underline{x}=x_{i} x_{i}$

$$
\begin{aligned}
\nabla f(x) & =\frac{\partial f}{\partial x_{j}} e_{j}=\frac{\partial\left(x_{i} x_{i}\right)}{\partial x_{j}} e_{j} \\
& =\left(\frac{\partial x_{i}}{\partial x_{j}} x_{i j}+x_{i} \frac{\partial x_{i}}{\partial x_{j}}\right) e_{j} \\
& =2 x_{i} \delta_{i j} \frac{e_{j}}{i j}=2 x_{i} e_{i} \\
& =2 \underline{x}
\end{aligned}
$$

$$
\underline{\nabla f}(\underline{x}) \equiv \frac{\partial f(\underline{x})}{\partial x_{i}} e_{i}
$$

Coordinate independent representation of the gradient of a scalar field:
In 3D:
In 2D:

$$
\underline{\nabla f}(\underline{x}) \equiv \lim _{\text {Area }(B) \rightarrow 0} \frac{1}{\text { Area }(B)} \int_{\text {Boundary }(B)} f \underline{n} d s
$$

B can be any infinitesimal region enclosing x.
Choose B:

$$
\begin{aligned}
& \operatorname{Vol}(B)=\Delta x_{1} \Delta x_{2} \Delta x_{3} \quad \Delta x_{3} \\
& \operatorname{Area}(B)=2\left(\Delta x_{1} \Delta x_{2}+\Delta x_{2} \Delta x_{3}+\Delta x_{1} \Delta x_{3}\right)
\end{aligned}
$$

Note: $\int_{\text {Area }(B)} f \underline{n} d a=\sum_{i=1}^{3}\left[\int_{A_{i}} f\left(\underline{x}+\Delta x_{i} \underline{e}_{i}\right) \underline{e}_{i} d A+\int_{A_{i}} f(\underline{x})\left(-\underline{e}_{i}\right) d A\right]$

$$
=\sum_{i=1}^{3}\left[\bar{f}\left(\underline{x}+\Delta x_{i} \underline{e}_{i}\right)-\bar{f}(\underline{x})\right] \underline{e}_{i} A_{i} \quad \text { where } \bar{f} \equiv \frac{1}{A_{i}} \int f d A
$$

Note $\operatorname{Vd}(B)=A_{1} \Delta x_{1}=A_{2} \Delta x_{2}=A_{3} x_{3}=A_{i} \Delta x_{i}$ (notum)

$$
\text { Thus } \underset{-}{ } f=\sum_{i=1}^{3}\left[\lim _{\Delta x_{i} \rightarrow 0} \frac{\left[\bar{f}\left(\underline{x}+\Delta x_{i} \underline{e}_{i}\right)-\bar{f}(\underline{x})\right]}{A_{i}^{\prime} \Delta x_{i}} \underline{e}_{i} A_{i}\right]=\sum_{i=1}^{3} \frac{\partial f}{\partial x_{i}} \underline{e}_{i}
$$

Vector field: vector function of the position vector \boldsymbol{x} in 2D/3D:
Example

$$
\begin{aligned}
& \underline{v}(\underline{x})=\left(x_{2}+x_{3}\right) \underline{e}_{1}+\left(x_{1}+x_{3}\right) e_{2}+\left(x_{1}+x_{2}\right) \underline{e}_{3} \\
& \text { i.e. } \underline{v}(\underline{x}) \sim\left[\begin{array}{l}
x_{2}+x_{3} \\
x_{1}+x_{3} \\
x_{1}+x_{2}
\end{array}\right] \\
& (\underline{v}, \underline{)})
\end{aligned}
$$

Divergence of a vector field: (results in scalar field)
Measures the change in 'flux' (outflow-inflow) at each point in a vector field.

$$
\operatorname{div} \underline{v}(\underline{x}) \equiv \lim _{\operatorname{Vol}(B) \rightarrow 0} \frac{1}{\operatorname{Vol}(B)} \int_{\text {Area }(B)} \underline{v}(\underline{x}) \cdot n d A
$$

Note: $\boldsymbol{\nabla} \sim\left[\begin{array}{l}\frac{\partial}{\partial x_{1}} \\ \frac{\partial}{\partial x_{2}} \\ \underline{v}(\underline{x}) \\ \frac{\partial}{\partial x_{3}}\end{array}\right]$
Examples:

$$
\begin{aligned}
& \operatorname{div} \underline{v}(\underline{x})=\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}+\frac{\partial v_{3}}{\partial x_{3}}=\frac{\partial v_{i}(\underline{x})}{\partial x_{i}}=\underset{\text { comma }}{v_{i, i}} \Rightarrow \frac{\partial}{\partial x}=\underline{\nabla \cdot \underline{v}(\underline{x})} \\
& \text { les: }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \underline{v}(\underline{x})=\left(x_{2}+x_{3}\right) \underline{e}_{1}+\left(x_{1}+x_{3}\right) \underline{e}_{2}+\left(x_{1}+x_{2}\right) e_{3} \Rightarrow \underline{v} \quad \Rightarrow \operatorname{div} \underline{v}(\underline{x})=0 \\
& \rightarrow \underline{v}(\underline{x})=x_{1} \underline{e}_{1}+x_{2} \underline{e}_{2}+x_{3} e_{3}=\underline{v} \quad \operatorname{div} \underline{v}(\underline{x})=1+1+1=3 \\
& \rightarrow \underline{v}(\underline{x})=x_{1}^{2} \underline{e}_{1}+x_{2}^{2} \underline{e}_{2}+x_{3}^{2} \underline{e}_{3} \quad \Rightarrow \operatorname{div} \underline{v}(\underline{x})=2\left(x_{1}+x_{2}+x_{3}\right)
\end{aligned}
$$

Curl of a vector field: (results in a vector field)
Measures change in 'circulation' at a point in a vector field.

$$
\begin{aligned}
& \text { curl } \underline{v}(\underline{x})=\lim _{\operatorname{Vol}(B) \rightarrow 0} \frac{1}{\operatorname{Vot}(B)} \int_{\text {Area }(B)}^{\underline{v} \times \underline{n} d a} \\
& \text { curt } \underline{v}(\underline{x})=\frac{-\nabla \times \underline{v}(\underline{x})}{(\operatorname{or} \underline{v}(\underline{x}) \times \underline{\nabla})}=-\left(\frac{\partial}{\partial x_{j}} \underline{e}_{j}\right) \times v_{i}(\underline{x}) \underline{e}_{i}=\in \ddot{i j k}_{i} v_{i}, e_{j} \underline{e}_{k}
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& \rightarrow \underline{v}(\underline{x})=\underline{x} \Rightarrow-\underline{\nabla} \times \underline{v}(\underline{x})=\epsilon_{i j k} \frac{\partial x_{i}}{\partial x_{j}} \underline{e}_{k}=\epsilon_{i j k} \delta_{i, j} \underline{e}_{k}=\underline{0} \\
& \rightarrow \underline{v}(\underline{x})=\left(x_{2}-x_{3}\right) \underline{e}_{1}+\left(x_{3}-x_{1}\right) e_{2}+\left(x_{1}-x_{2}\right) \underline{e}_{3} \\
& \Rightarrow-(\underline{\nabla} \times \underline{v}(\underline{x}))=\left[\begin{array}{ccc}
\underline{e}_{1} & e_{2} & e_{3} \\
\left(x_{2}-x_{3}\right) & \left(x_{3}-x_{1}\right) & \left(x_{1}-x_{2}\right) \\
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}}
\end{array}\right]=\left(\frac{\partial}{\partial x_{3}}\left(x_{3}-x_{1}\right)-\frac{\partial}{\partial x_{2}}\left(x_{1}-x_{2}\right)\right) \\
&(0 r \underline{v}(\underline{x}) \times \underline{\nabla}) \\
&+\left(\frac{\partial}{\partial x_{1}}\left(x_{1}-x_{2}\right)-\frac{\partial}{\partial x_{3}}\left(x_{2}-x_{3}\right)\right) \\
&+\left(\frac{\partial}{\partial x_{2}}\left(x_{2}-x_{3}\right)-\frac{\partial}{\partial x_{1}}\left(x_{3}-x_{1}\right)\right)
\end{aligned}
$$

Gradient of a vector field: (results in a tensor field)
Measures rate of change of vector field in all possible directions.

Examples:

$$
\begin{aligned}
& \rightarrow \underline{v}(\underline{x})=\underline{x} \Rightarrow \nabla v(\underline{x})=\left(\frac{\partial x_{i}}{\partial x_{j}}\right) \operatorname{li}_{i} \otimes \underline{e}_{j} \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \rightarrow \text { Look at Example } 7 \text { in the book! }
\end{aligned}
$$

Analogies between vector products and vector field derivatives:

\rightarrow Dot:	$\underline{u} \cdot \underline{v}$	$;$	$\underline{v} \cdot \underline{\nabla}$	$($ div $)$
\rightarrow Cross:	$\underline{u} \times \underline{v}$	$;$	$\underline{v} \times \underline{\nabla}$	$($ curl $)$
\rightarrow Dyad:	$\underline{u} \otimes \underline{v}$	$;$	$\underline{v} \otimes \underline{\nabla}$ (grad)	

Directional derivative of a vector field (gives a vector)
Rate of change of a vector field at a point \boldsymbol{x} in a specific direction \boldsymbol{n}

$$
D \underline{v} \cdot \underline{\eta}=\lim _{\epsilon \rightarrow 0} \frac{\underline{v}(\underline{x}+\epsilon \underline{n})-\underline{v}(\underline{x})}{\epsilon}=\left.\left[\frac{d}{d \epsilon} \underline{v}(\underline{x}+\epsilon \underline{n})\right]\right|_{\epsilon=0}=\nabla \underline{v} \underline{n}
$$

Examples:
For $\underline{v}(\underline{x})=\underline{x} \rightarrow D \underline{v}(\underline{x}) \cdot \underline{x}=\underline{I} \underline{x}=\underline{x}$

$$
\rightarrow D \underline{v}(\underline{x}) \cdot \underline{x}_{1}=\underset{\sim}{I} \underline{x}_{1}=\underline{x}_{1}
$$

$$
\left(\begin{array}{llll}
\text { where } & \underline{x}_{1} & \text { is } a \\
\text { vector } & 1 & \text { to } & \underline{x}
\end{array}\right)
$$

Tensor field: tensor function of the position "vector"
Example:

$$
I(\underline{x})=(\underline{x} \cdot \underline{x}) \underset{\sim}{I}-2 \underline{x} \otimes \underline{x}
$$

Note: A tensor $\boldsymbol{T}(\boldsymbol{x})$ may be a non-linear function \boldsymbol{x}, but its action on a vector $\boldsymbol{u}(\boldsymbol{x})$ is still linear: $\underset{\sim}{u}$

Divergence of a tensor field: (results in a vector field)

$$
\begin{align*}
& \operatorname{div}(T) \equiv \lim _{\operatorname{Vol}(B) \rightarrow 0} \frac{1}{\operatorname{Vol}(B)} \int_{\operatorname{Area}(B)}^{T} n d A \tag{ij,j}\\
& \operatorname{div}(\underset{\sim}{T})=\frac{\partial T}{\partial x_{i}} \underline{e}_{i}=\frac{\partial}{\partial x_{i}}(T_{j k} e_{j} \otimes \underbrace{e_{k}}_{\delta k}) \underline{e}_{i}=\frac{\partial T_{j i}}{\partial x_{i}} e_{j}=\frac{\partial T_{i j}}{\partial x_{j}} \underline{e}_{i}
\end{align*}
$$

Example:

$$
\begin{aligned}
\underset{\sim}{T} & =(\underline{x} \cdot \underline{x}) \underset{\sim}{I}-2 \underline{x} \otimes \underline{x} \\
& =x_{k} x_{k} \delta_{i j} \underline{e}_{i} \otimes \underline{e_{j}}-2 x_{i} x_{j} \underline{e}_{i} \otimes \underline{e}_{j} \quad\left(\begin{array}{l}
\text { Note : The 2 terms } \\
\text { follow indicial } \\
\text { notation individually }
\end{array}\right) \\
\operatorname{div}(\underset{\sim}{T}) & =\frac{\partial\left(x_{k} x_{k}\right)}{\partial x_{j i}} \delta_{i j} \underline{e}_{i}-2 \frac{\partial\left(x_{i} x_{j}\right) \underline{e}_{i}}{\partial x_{j}} \\
& =2 x_{k} \delta_{k i} \underline{e}_{i}-2 \times\left(\delta_{i j} x_{\dot{j}}+x_{i} \delta_{j j}\right) \underline{e}_{i} \\
& =2 x_{i} \underline{e}_{i}-2\left(4 x_{i}\right) \underline{e}_{i} \\
& =-6 x_{i} \underline{e}_{i}=-6 \underline{x}
\end{aligned}
$$

These theorems are generalized versions of the fundamental theorem of calculus.
Divergence theorem (Gauss theorem)

- For vector fields. $\int_{\operatorname{VoL}(B)} \operatorname{div} \underline{v}(\underline{x}) d V=\int_{\text {Region }} \underline{v}(\underline{x}) \cdot \underline{\underline{n}} d a \quad(B) \quad\left(\begin{array}{l}\text { Area any region }\end{array}\right)$
Example:

Consider $\underline{v}(\underline{x})=\underline{x} ; \quad \operatorname{div} \underline{v}(\underline{x})=x_{i, i}=3$
Over a sphere:

unit normal to Boundary

$$
\begin{aligned}
\int_{V O L} 3 d V & =\int_{\text {Area }} x \cdot\left(\frac{x}{\|\underline{x}\|} d a\right. \\
\beta\left(\frac{4}{3} \pi R^{3}\right) & =\int_{\text {Area }}^{n} \frac{R^{2}}{R} d a=R\left(4 \pi R^{2}\right)
\end{aligned}
$$

- For gradient of a scalar field:

$$
\int_{\operatorname{Vol}(B)} \nabla g d V=\int_{\operatorname{Area}(B)} \underline{n} \underline{n} d a
$$

- For gradient of a vector field: $\int_{V o l(B)} \stackrel{\nabla u}{\sim} d V=\int_{A r e a(B)} \underline{v} \otimes \underline{n} d a$
- For a tensor field:

$$
\int_{\operatorname{Vol}(B)} d i v(\tau) d V=\int_{\text {Areal }(B)} \underset{\sim}{ } d a
$$

Curl Theorem (special case of the Stokes theorem): c.f. http://mathworld.wolfram.com/CurlTheorem.html

$$
\begin{aligned}
\int(\underline{\nabla} \times \underline{v}) d s= & \oint \underline{v} \cdot d \underline{x} \\
\operatorname{surface}(s) & \text { Boundary }(s) \\
& \text { (line integral) }
\end{aligned}
$$

Green's Theorem
(special case of Curl theorem / Stokes' theorem for a plane)

$$
\int\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\oint_{\text {Bound anu }(B)} M d x+N d y
$$

Boundary (B)

