
CE-570 Advanced Structural Mechanics

- Arun Prakash

The BIG Picture

Mechanics is study of how things work: how anything works, how the world works! ○

People ask: "Do you understand the mechanics of _____?" It could be: 
Do you understand the mechanics of this building/bridge? (How loads are being carried?)
Do you understand the mechanics of heat transfer?
Do you understand the mechanics of how this automobile works?
Do you understand the mechanics of flight?
Do you understand fracture mechanics / wave mechanics / geo-mechanics / thermo-mechanics 
/ electro-mechanics / celestial mechanics / quantum mechanics etc. etc. 
In that sense, mechanics is almost synonymous with Physics. However, mechanics is really a 
branch of Physics.

Rigid body mechanics (Statics / Dynamics), �

Mechanics of (deformable) materials,�

Continuum mechanics (including solid / fluid mechanics), �

Structural mechanics�

Within the context of Civil Engineering and Structural Engineering, mechanics is typically 
used to mean: 

○

(typical courses in undergraduate / graduate curricula: all based on Newtonian Mechanics). 

What is Mechanics? •

Study of the behavior of continuous bodies (solid/fluid). ○

Note: we assume that the "macro-scale" behavior of continuous bodies is not affected by the 
"micro-scale" (atomic/molecular) structure of their constituent materials.
Example Problem statement:○

Given:
body / geometry, 
boundary conditions, 
material properties, 
loads

Find:
Solution (displacements, strains, stresses etc.) everywhere in the body. 

Continuum mechanics•

Using: Governing partial differential equations (PDEs)

In addition, if anything is changing with time, then find everything at all times of interest!

(for small strain linear elasticity, for example)
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Builds upon continuum (solid) mechanics○

Make assumptions regarding the displacement field within individual structural members○

Reduce the "number" of unknowns (dimensionality of the problem) ○

Structural Mechanics•

Examples: Beam theory, plate theory, shell theory

http://youtu.be/IgfWjCvCSuk

Analytical (exact) solutions to the governing PDEs are not possible in general.○

One can obtain good approximate solutions, using Finite Element Method (FEM) for example.○

Understanding the underlying mechanics and solution methods is very important to appreciate 
limitations of approximate solutions and interpret numerical results correctly.

○

Role of approximate numerical solutions•

Structural Analysis consists of techniques to solve problems in Structural Mechanics ○

Determinate structures: Find reactions, internal forces, and then displacements�

Indeterminate structures: Force/flexibility method; Displacement/Stiffness methods�

Structural dynamics: Study of structures subject to dynamic loads.�

(primarily for beam and frame structures, and use a lot of (conservative) approximations)

Structural Design is an inverse problem: ○

Given:
All possible loads (combinations) 
Permissible displacements, strains, stresses
Find: A structure that fulfills these constraints!
(i.e. Geometry, Boundary conditions, materials etc.)
Approach: 
Assume a solution; 
Check with Structural Analysis / detailed FEM
Refine as needed.

Structural Mechanics in relation to Structural Analysis and Design•

?

Gain in-depth understanding of the basic principles of continuum (solid) mechanics○

Learn about exact and approximate (numerical) solution methods for governing PDEs ○

Introduction to Variational Principles and concepts in static stability○

Objectives of this course•
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Chapter 1: Mathematical Preliminaries

In order to state most problems in mechanics, we need to define some physical entities such continuous 
bodies, surfaces, curves and points.

Point                         Curve                                      Surface                                         Body
Definitions of geometric objects:

Choice of coordinate system: 
Location of the Origin and orientation of basis vectors defines a coordinate system.

We will restrict ourselves to right-handed, orthonormal, Cartesian coordinate systems.

Scalars and scalar fields
Physical quantities with magnitude only. Examples: temperature, density etc.
Denoted with lower case Latin / Greek letters: 

As opposed to "temperature at a point" or "density at a point" in a body, one can also have scalar fields 
as functions of position: 

      Density field
Example: Temperature field

Vectors
Physical quantities that need magnitude and direction for defining. 
Examples: velocity, force etc.
Denoted with underlined lower case Latin letters:

Note: Position "vector" of a point is not strictly a vector since it depends on the definition of a 
coordinate system. The position "vector" changes if one changes the coordinate system.
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Vector fields
Similar to scalar fields, we can have vector fields as a function of position: each point in a body may 
have a different velocity or force acting on it.

(Distributed) Force field
Example:                    Velocity field

Vector Addition

Follows parallelogram law.

Subtraction, Additive Inverse•

Properties of vector addition•

Commutative
Associative

Scalar multiplication (scales the length of the vector)•

Vector Products

Dot product•

Note:
Kronecker Delta: 
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Cross product•

Indicial notation and summation convention•

Write the expression in terms of free and repeated / dummy indices (occurring exactly twice),○

Omit the summation sign (assuming that summation is implied for repeated / dummy indices),○

Make use of the Kronecker delta contraction property.○

In manipulating the component form of complicated vector expressions, we can utilize some shortcuts:
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Permutation (or alternating or Levi-Civita) symbol•

Scalar Triple product of 3 vectors•
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In mechanics we often need more general quantities than just scalars and vectors. 
Tensors are a generalization of the concept of scalars and vectors 

Tensors

Tensors are entities that operate upon a vector to produce another vectorDefinition:

A good way to think about tensors is in terms of their effect on an arbitrary vector:

Tensor fields: 
Just as scalar and vector fields, we can have tensor fields i.e. tensor as a function of position: T(x)
Note that writing a tensor field as T(x) does not mean that T is operating on x.
It means that the T(x) is a function of x and still operates on a vector u(x) at that point.
Written as:    T(x)  u(x)  =  v(x)
or simply as:          T  u  =  v
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Properties of a tensor:

Tensor product of two vectors
It is possible to construct a tensor from two vectors by using a special operation called a tensor product:

Just like any vector can be expressed in terms of basis vectors:

We can also construct basis tensors:

Using this:
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Tensor transpose•

Tensor Composition (product of 2 tensors to get another tensor)•

Tensor inverse•

For any 2 arbitrary vectors u and w

Symmetric Tensors•

Skew-symmetric Tensors•

Note: Any tensor T can be expressed as:
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Change of coordinate system

Note: [Q] here is a transformation matrix (not a tensor). 
[Q] is an orthogonal matrix: [Q][Q]T = [Q]T[Q] = [I]
However a tensor Q can be defined such that ei = Q ei'      (see problem 13 in Hjelmstad)

Transformation of Tensors
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Tensor Invariants (Quantities that don't change, no matter which coordinate system is chosen) 

Example of an invariant for a vector:

Similarly, a tensor invariant is a function of the tensor 
components (in any coordinate system):

In a different coordinate system, the tensor components would be given by:

For a function to be invariant:
Simply referred to as:

Primary Invariants

Eigenvalues & Eigenvectors of Symmetric Tensors 
(Principal Invariants)
As mentioned earlier, a tensor operates on a vector to 
produce another vector (by stretching and/or rotating it).
However, for a given symmetric tensor, there are some 
specific vectors (directions) n on which the action of the 
tensor is purely stretching (no rotation).

The problem of finding λ and n for a given (symmetric) tensor is called the Eigenvalue problem.
To obtain non-trivial solutions (n ≠ 0):

This results in a cubic equation for λ called the characteristic equation:

where IT, IIT, IIIT are called the Principal Invariants of T:

Note: ni are orthogonal
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Solving the characteristic equation:

and 3 corresponding Eigenvectors: n1, n2, n3

The cubic polynomial equation, in general, will have 3 roots (Eigenvalues): λ1, λ2, λ3

Example:

Using numerical non-linear equation solver (Newton's method) •

By hand (factorizing):•

Using existing software programs such as MATLAB:•

Note: The Principal invariants IT, IIT, IIIT of T are 
the coefficients of the characteristic equation:

IT = 

IIT = 

IIIT = 
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Spectral decomposition of a (symmetric) tensor:

Two roots repeated: •

Special cases:
Three roots repeated: •

A symmetric tensor T can be expressed in terms of its Eigenvectors as:

Note: If we express the components of a tensor in a coordinate system that coincides with its 
principal eigenvectors:

Then using Spectral representation:

Also note that using this basis (called canonical basis), the principal invariants are simply given as:

Caley-Hamilton Theorem
An important property of tensors (and matrices) is that they satisfy their own characteristic equation: 
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Calculus of Scalars, Vectors and Tensors 

As previously noted, scalars, vectors and tensors 
are quantities that are associated with each point 
in a body as a field.
They can be expressed as functions of position:

In order to work with fields, we need to use concepts of differential and integral calculus.
First recall the following basic concepts in 1D 
Scalar function of 1 variable: Derivative:

Scalar field: scalar function of position "vector" in 2D / 3D

Directional Derivative
(of a scalar field, 

at a specific point x, 
in the direction n)

FLUX of f (x) over the boundary of ∆x

measure (length) of ∆x

Fundamental Theorem of Calculus:

Example:
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Gradient of a scalar field:
(results in a vector field)

Direction of maximum change (increase) in value of f(x):

Vector field: vector function of the position vector x in 2D/3D:
Example

Coordinate independent representation of the gradient of a scalar field:

B can be any infinitesimal region enclosing x.

Example:
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Divergence of a vector field: (results in scalar field)

Curl of a vector field: (results in a vector field)

Gradient of a vector field: (results in a tensor field)

Measures the change in 'flux' (outflow-inflow) at each point in a vector field.

Examples:

Measures change in 'circulation' at a point in a vector field.

Examples:

Measures rate of change of vector field in all possible directions.

Examples:

Look at Example 7 in the book!
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Example:
Tensor field: tensor function of the position "vector"

Divergence of a tensor field: (results in a vector field)

Example:

Rate of change of a vector field at a point x in a specific direction n
Directional derivative of a vector field (gives a vector)

Examples:

Analogies between vector products and vector field derivatives:

http://www.mathworks.com/

Note: A tensor T(x)  may be a non-linear function x, 
but its action on a vector u(x) is still linear:
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These theorems are generalized versions of the fundamental theorem of calculus.
Integral Theorems

For vector fields.•

Divergence theorem ( Gauss theorem)

For gradient of a scalar field:•

For a tensor field:•

Curl Theorem (special case of the Stokes theorem):
c.f. http://mathworld.wolfram.com/CurlTheorem.html

For gradient of a vector field:•

Green's Theorem 
(special case of Curl theorem / Stokes' theorem for a plane)
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